Biofuel market to double by 2022

by John Brian Shannon John Brian Shannon
Originally published at BiofuelCentral.org

New biofuel technologies are allowing commercially viable transportation fuel production from switchgrass, non-edible grains and fruits, from certain trees, and recently from the ‘stover’ or ‘dross’ of certain crops (stalks, roots, leaves, bark, nutshells, husks) and algae.

Algae is the new player on the block and once it is supercharged with common industrial waste gases (like CO2) it becomes an exceptionally pure and clean burning biofuel with no negative waste stream.

But some may feel that biofuels have little future due to dramatically falling oil prices and the improved fuel mileage of today’s cars

However, that’s not the case…

“China recently set aside an area the size of England to produce jatropha and other non-food plants for biodiesel.

India has up to 60 million hectares of non-arable land available to produce jatropha, and intends to replace 20 percent of diesel fuels with jatropha-based biodiesel.

In Brazil and Africa, there are significant programs underway dedicated to producing non-food crops jatropha and castor for biodiesel.” — Will Thurmond in his book, Biodiesel 2020

Three generations of biofuel are already on the market or are undergoing commercial testing as of 2014

  • 1st-generation biofuels are made from processed food crops such as corn, sugar cane and sugar beets
  • 2nd-generation biofuels are made from non-food crops such as camelina, jatropha, millettia and switchgrass, which can grow in semi-arid regions
  • 3rd-generation biofuels are made from algae + enzymes, or organic waste materials such as cardboard, stover, other biomass, or from waste gases and waste liquids from industry.

3rd-generation biofuels show the most promise and are progressing well along their production trials timeline — while 1st-generation biofuels still have major environmental and minor economic obstacles to overcome.

Meanwhile, 2nd-generation biofuel production is booming in many developing countries and investors are making excellent returns.

Dual fuel gas station at Sao Paulo, Brazil
As this photo demonstrates, you can fill up with 100% pure sugarcane ethanol (A) or gasoline/bio-ethanol blend (G). In Brazil, all gasoline is required by law to have a minimum bio-ethanol content of 22 percent. Image courtesy of Mariordo (Mario Roberto Duran Ortiz)

The global biofuel industry is entering a rapid phase of development

Total global biofuel production is projected to reach 66.3 billion gallons per year (BGPY) by 2022, and bio-ethanol is expected to hit 51.1 BGPY compared to biodiesel’s 16.2 BGPY.

According to a recent report from Navigant Research, worldwide revenue from biofuels for road transportation will grow from $166.5 billion annually in 2014 to $337.8 billion by 2022.

“Over the last 10 years, growth in the biofuels sector has been driven by the increase in ethanol production capacity in the United States and Brazil, and in biodiesel in Europe. Today, the industry is on the verge of entering a new phase of development focused on advanced and drop-in biofuels.” — Scott Shepard, research analyst with Navigant Research

“Given the scale of development to date and the crystallization of interests… widespread biofuels commercialization is no longer a question of if, but when.” — Biofuels Markets and Technologies report by Pike Research

A note about sugarcane

The following is true whether sugarcane is being harvested to produce table sugar or is being harvested to produce bio-ethanol

When sugarcane is harvested (every 5 1/2 months) the leaves, roots, etc. (also known as the ‘stover’ or ‘dross’ by farmers) is left on the ground and burned.

Millions of hectares of sugarcane fields go up in smoke, twice per year.

The people who can afford to leave the area during the twice-yearly burning are certain to leave as the unpleasant black smoke pervades those regions for up to two weeks, at two different times of the calendar year. Each year, a total of one month’s growing season is lost as the fields are burned.

This common practice releases millions of tonnes of CO2 and other gases (some toxic) into the atmosphere, causing a net loss for Earth’s atmosphere.

But even as burning millions of hectares of sugarcane fields measurably worsens the air quality of the Earth — hundreds of miles away from the twice-yearly burning in cities like São Paulo, Brazil for example (population 11.3 million) the urban air quality is dramatically improved year-round as a result of using bio-ethanol in the city’s millions of cars.

New technology to the rescue

Some foresighted bio-ethanol producers in Brazil are harvesting the sugarcane stover and processing it into biodiesel or bio-ethanol (depending on the enzyme used) in cellulosic biofuel reactors specially made for conversion of plant stover.

Total biofuel yields from stover are slightly lower than normal sugarcane biofuel production. But many farmers find stover biofuel produces fuel for farm use and they burn it to produce both heat and electricity to power the biofuel factory (during the twice-yearly biofuel or table sugar production run) and nearby homes (all year).

The Brazilian government is assisting farmers and thereby helping the Earth’s atmosphere by providing seed money and a mild subsidy to sugarcane farmers (regardless if the sugarcane is ultimately grown to produce table sugar or biofuel) to allow them to economically harvest and process millions of tons of stover, instead of burning it in the fields.

Properly targeted policies now, can have maximum impact on the promising economic and environmental future of biofuel.

Air Pollution Cost Approaches $1 trillion in the West

by John Brian Shannon
(Originally published at JBSnews.com)

Air pollution has a very real cost to our civilization via increased healthcare costs, premature deaths, lowered productivity, environmental degradation with resultant lowered crop yields, increased water consumption and higher taxation.

However, air pollution is only one cost associated with fossil fuel use.

There are three main costs associated with energy

  1. The retail price that you pay at the gas pump or on your utility bill for example
    (which is paid by consumers)
  2. The subsidy cost that governments pay energy producers and utility companies
    (which is ultimately paid by taxpayers)
  3. The externality cost of each type of energy
    (which is paid by taxpayers, by increased prices for consumers, and the impact on, or the ‘cost to’ the environment)

Externality cost in Europe and the U.S.A.

A recent report from the European Environment Agency (EEA) states that high air pollution levels (one type of externality) in the EU cost society €189 billion every year and it’s a number that increases every year. (That’s $235 billion when converted to U.S. dollars)

To put that number in some kind of context, the cost of the air pollution externality in the EU annually, is equal to the GDP of Finland.

Let’s state that even more clearly. The amount of taxation paid by EU taxpayers every year to pay for airborne fossil fuel damage is equal to Finland’s entire annual economic output!

It’s getting worse, not better, notwithstanding recent renewable energy programs and incentives. Even the admirable German Energiewende program is barely making an impact when we look at the overall EU air quality index.

“Of the 30 biggest facilities it identified as causing the most damage, 26 were power plants, mainly fueled by coal in Germany and eastern Europe.” — Barbara Lewis (Reuters)

That’s just Europe. It’s even worse in the U.S., according to a landmark Harvard University report which says coal-fired power generation (externality cost alone) costs the U.S. taxpayer over $500 billion/yr.

“Each stage in the life cycle of coal—extraction, transport, processing, and combustion—generates a waste stream and carries multiple hazards for health and the environment. These costs are external to the coal industry and thus are often considered as “externalities.”

We estimate that the life cycle effects of coal and the waste stream generated are costing the U.S. public a third to over one-half of a trillion dollars annually.

Many of these so-called externalities are, moreover, cumulative.

Accounting for the damages conservatively doubles to triples the price of electricity from coal per kWh generated, making wind, solar, and other forms of non fossil fuel power generation, along with investments in efficiency and electricity conservation methods, economically competitive.

We focus on Appalachia, though coal is mined in other regions of the United States and is burned throughout the world.” — Full Cost Accounting for the Life Cycle of Coal by Dr. Paul Epstein, the Director of Harvard Medical School Center for Health and the Global Environment, and eleven other co-authors

The report also notes that electricity costs would need to rise by another .09 to .27 cents per kilowatt hour in the U.S. to cover the externality cost of American coal-fired electricity production.

The externality cost for solar or wind power plants is zero, just for the record

Dr. Epstein and his team notes: “Coal burning produces one and a half times the CO2 emissions of oil combustion and twice that from burning natural gas (for an equal amount of energy produced).”

There’s the argument to switch from coal to natural gas right there

Also in the Harvard report in regards to the intrinsic inefficiency of coal: “Energy specialist Amory Lovins estimates that after mining, processing, transporting and burning coal, and transmitting the electricity, only about 3% of the energy in the coal is used in incandescent light bulbs.”

“…In the United States in 2005, coal produced 50% of the nation’s electricity but 81% of the CO2 emissions.

For 2030, coal is projected to produce 53% of U.S. power and 85% of the U.S. CO2 emissions from electricity generation.

None of these figures includes the additional life cycle greenhouse gas (GHG) emissions from coal, including methane from coal mines, emissions from coal transport, other GHG emissions (e.g., particulates or black carbon), and carbon and nitrous oxide (N2O) emissions from land transformation in the case of MTR coal mining.” — Harvard University’s Full Cost Accounting for the Life Cycle of Coal report

It’s not like this information is secret. All European, American, and Asian policymakers now know about the externality costs of coal vs. renewable energy. It’s just that until recently everyone thought that the cost of switching to renewable energy, was higher than the cost of fossil externalities.

It’s not only an economic problem, it’s also a health problem

“Air pollution impacts human health, resulting in extra healthcare costs, lost productivity, and fewer work days. Other impacts are reduced crop yields and building damage.

Particulate matter and ground-level ozone are two of the main pollutants that come from coal.

90% or more of Europeans living in cities are exposed to harmful air pollution. Bulgaria and Poland have some of the worst pollution of the European countries.

An estimated 400,000 premature deaths in European cities were linked to air pollution in 2011.” — CleanTechnica

Externality cost in China

Remember the Beijing Olympics where the city’s industry and commercial business were shut down to allow visitors and athletes to breathe clean air during their stay (and Wow!) look at their clear blue sky for the first time in decades. Great for tourists! Bad for Beijing business and industry, with the exception of the tourism industry (for one month) of course.

The Common Language Project reported in 2008 that premature deaths in China resulting from fossil fuel air pollution were surpassing 400,000 per year.

“China faces a number of serious environmental issues caused by overpopulation and rapid industrial growth. Water pollution and a resulting shortage of drinking water is one such issue, as is air pollution caused by an over-reliance on coal as fuel. It has been estimated that 410,000 Chinese die as a result of pollution each year.” clpmag.org

The die is cast since it is becoming common knowledge that renewable energy merely requires a small subsidy to assist with power plant construction and grid harmonization — while fossil fuels continue to require truly massive and ongoing subsidies to continue operations.

Subsidy cost of fossil fuels

Already there is talk of ending fossil fuel producer subsidies, which in 2014 will top $600 billion worldwide

Want to add up the total costs (direct economic subsidy and externality cost subsidy) of fossil fuels?

Add the $600 billion global fossil fuel subsidy to the to the $2 trillion dollars of global externality cost and you arrive at (approx) $2.5 trillion dollars per year. Then there is the more than 1 million premature deaths globally caused by air pollution. All of that is subsidized by the world’s taxpayers.

Compare that to the total costs of renewable energy. Well, for starters, the economic subsidy dollar amount for renewable energy is much less (about $100 billion per year globally) and there are no externality costs.

No deaths. No illness. No direct or related productivity loss due to a host of fossil fuel related issues (oil spills, coal car derailment, river contamination, explosions in pipelines or factories) for just a very few examples.

The fossil fuel industry is a very mature industry, it has found ways to do more with ever-fewer employees, and it gets more subsidy dollars than any other economic segment on the planet.

By comparison, the renewable energy industry is a new segment, one that requires many thousands of workers and it gets only relative handfuls of subsidy dollars. And, no externalities.

It becomes clearer every day that high carbon fossil electricity power production must be displaced by renewable energy

No longer is it some arcane moral argument that we should switch to renewables for the good of the Earth; Fossil fuel is proving to be a major factor in human illness/premature deaths, it sends our money abroad to purchase energy instead of keeping our money in our own countries, and the wholly-taxpayer-funded subsidy cost of fossil is out of control and getting worse with each passing year.

The time for dithering is past. It’s time to make the switch to renewable energy, and to start, we need to remove the worst polluting power plants from the grid (and at the very least, replace them with natural gas powered plants) or even better, replace them with hybrid wind and solar power plants.

To accomplish this, governments need to begin diverting some of the tens of billions of dollars annually paid to the fossil fuel industry to the renewable energy industry.

Germany’s Energiewende program was (and still is) an admirable first step. Once Germany has completed it’s energy transition away from oil, coal and nuclear — having replaced all of that generation capacity with renewable energy and natural gas, only then can it be hailed a complete success — and German leaders should go down in history as being instrumental in changing the world’s 21st century energy paradigm.

Dank an unsere deutschen Freunde! (With thanks to our German friends!)

If only every nation would sign-on to matching or exceeding the ongoing German example, we wouldn’t have 1 million premature deaths globally due to fossil fuel burning, we wouldn’t have almost 2 trillion dollars of externality cost, we wouldn’t need $600 billion dollars of direct subsidies for fossil fuel producers — and we would all live in a healthier environment, and our plant, animal, and aquatic life would return to their normally thriving state.

Taxes would reflect the global $2.5 trillion drop in combined fossil fuel subsidy and fossil fuel externality costs, employment stats would improve, productivity would increase, the tourism industry would receive a boost, and enjoyment of life for individuals would rebound.

It’s a truism in the energy industry that all energy is subsidized, of that there is no doubt. Even renewable energy receives tiny amounts of subsidy, relative to fossil.

But it is now apparent that over the past 100 years, getting ‘the best (energy) bang for the buck’ has been our nemesis. The energy world that we once knew, is about to change.

The world didn’t come to an end when air travel began to replace rail travel in the 1950’s. Now almost everyone travels by air, and only few travel by train.

And what about the railway investors didn’t they lose their money when the age of rail tapered-off? No, they simply moved their money to the new transportation mode and made as much or more money in the airline business.

Likewise, the world will not come to an end now that renewable energy is beginning to displace coal and oil. Investors will simply reallocate their money and make as much or more money in renewable energy.

Ubitricity streetlamp plug-in charges German EV’s

by John Brian Shannon
Originally published at JohnBrianShannon.com

One major impediment to the adoption of electric vehicles is the high cost of public charging stations for EV’s, as the charging units are very expensive.

Ubitricity.de has come up with a novel solution whereby ordinary streetlamps could be fitted with an electric vehicle charging point for the reasonable cost of 500 to 800 euros per streetlight, which is certainly more doable than the 10,000 euros of your typical EV public charging station in Europe.

Ubitricity.de - Reuters screenshot
Ubitricity.de – Reuters screenshot

>> Click here to see the Reuters Ubitricity video. <<

Streetlamps in selected cities within Germany are now being fitted with a charging point allowing electric vehicle drivers to recharge their car battery.

Drivers prepay the cost of the electricity via Ubitricity to charge at these locations. Ostensibly, every streetlamp post and parking meter in Europe could be fitted with one of these charging points.

Not only do German drivers have the option of charging their EV’s at home, now they can now pick up a charge while they shop, have coffee with friends, or while they spend the day at their workplace.

“We are convinced there is room for this technology to be applied everywhere it’s needed, but we think that in most places there is a pressing need for investment in a charging infrastructure to allow the installation of charging points, not only here on lamp posts, but also in the workplace, at home and in underground carparks.

Governments are keen to cut the number of gas guzzling cars on the roads to reduce greenhouse gas emissions. Many are offering cash incentives to drivers to buy electric. But take-up has been slow partly due to the lack of charging stations.

There are lots of lamp posts which are already very well connected to the electricity network. Equipping a lamp post costs between 300 and 500 euros, depending on the circumstances at that location. When you consider the production price of our charging sockets, it is a long way from the 10,000 euros which must typically be invested in a charging station.” Founder of Ubitricity, Frank Pawlitsche

All you need is an Electric Vehicle, your prepaid Ubitricity account and Ubitricity connector cable, and you’re set

Ubitricity portable, streetlight-attachable EV charging unit
Ubitricity portable, streetlight-attachable EV charging unit

The great thing about the Ubitricity parking spots with their electric vehicle recharging connector is that they’re normal parking spots with a charging port added. Your mobile phone app displays the Ubitricity locations.

You can park there all day and return to a car that is fully energized and ready to go! No more petrol stations for you.

It’s a wonderful idea. Streetlamps and parking meters are everywhere it seems and combining a parking spot with an EV charging port is a stroke of genius.

Boy those Germans are smart. Gut gemacht! (Well done!)

Driving electric is a cornerstone of Germany’s Energiewende energy policy

Only when driving on renewables will EV users avoid greenhouse gas emissions — not just locally but on a global scale. Renewable energies and EVs are natural partners of a sustainable energy and transportation sector. — From the Ubitricity website

Not only Ubitricity — but also BMW is getting into the act

BMW i3
BMW i3 receiving a charge at a Ubitricity charge point. Image courtesy of ubitricity.de

Drivers of the much-loved BMW i3 electric vehicle will soon have their own BMW charging network and software to guide you to nearby charge points.

Eventually, BMW will build their network across Europe to facilitate EV travel across the continent.

BMW has a vision to offer buyers their choice of petrol powered, or as an option, electric powered, or hybrid/electric powered cars across all model lines.

BMW is also famous for installing wind turbines, solar panels, and biomass power plants at it’s German factories, and going completely off-grid!

It also has plans to get into the consumer electricity business throughout Europe.

You’ll soon be able to buy a BMW car and a BMW motorcycle for your driveway and BMW electricity for your home and office. All produced by renewable energy and only renewable energy.

A note about TESLA Model S drivers and their unique charging situation/opportunities

TESLA Model S at a SuperCharger location.
A TESLA Model S receiving a charge at a typical TESLA SuperCharger location. Image courtesy of edmonds.com

All TESLA vehicles can access the Ubitricity chargers but don’t forget to bring your Ubitricity charging cable — unlike the TESLA SuperCharger stations where the cable is permanently attached to the SuperCharger unit.

A benefit of TESLA SuperCharger top-ups is that they usually take 10-15 minutes. Look, there’s a Starbucks!

Another benefit is that (TESLA Model S drivers only) enjoy free charging at TESLA SuperCharger stations for the life of the car because that’s what you get for 70,000 euros.

But once your TESLA is charged, you must return to move your car in order to let other TESLA drivers access the SuperCharger, much like gas-engined drivers can’t leave their car in front of the gas pump while they go shopping.

Only the Ubitricity solution gives all EV drivers a convenient parking spot — and a charge. The ability to simply ‘Park and Plug’ at one location in today’s crowded cities is a very big plus indeed.

Related Articles:

Why Germany should leave coal behind

by John Brian Shannon

Germany, a thriving economic powerhouse under the Chancellorship of Angela Merkel, is also a renewable energy superstar and a country that is loaded with potential.

Lately, the Germans have taken a break from aggressively adding renewable energy to their grid by ending a lucrative feed-in-tariff (FiT) subsidy program that ramped-up the adoption of solar, wind and biomass installations across the country.

Not that these so-called ‘lucrative’ subsidies approached anywhere near what fossil fuel and nuclear power plant operators receive and have received since the postwar period began, as all energy in Germany (like most countries) is heavily subsidized by taxpayers but only the (much smaller) renewable energy subsidies get the headlines. Go figure.

Chancellor Angela Merkel made the courageous decision to accelerate the shutdown Germany’s nuclear power plants in the aftermath of the Fukushima disaster in 2011 after stress tests of German nuclear power plants showed safety concerns existed within the their nuclear fleet. She ushered in meaningful FiT subsidies to speed the German Energiewende program towards its goal of transition to renewable energy and greater energy efficiency — which had received only sporadic subsidies prior to Merkel.

Snapshot of the German Energiewende program

  • A popular Germany-only program to move towards a highly industrialized, sustainable green economy
  • Full phase-out of nuclear energy by 2022
  • 80-95% reduction in greenhouse gases by 2050
  • Minimum of 80% renewables in the power sector
  • 50% increase in energy efficiency by 2050

Germany’s utility companies haven’t seen change like this since WWII. After a century of serving conventionally-generated electrical power to a captive electricity market — approximately 1/3 of all German electricity is now generated via renewable energy if you also include biomass and hydro-power. That’s historic change by any standard.

Germany-renewable-energy-power-capacity at October 29, 2014 Fraunhofer Institute image

Although solar panel outputs are lower during the winter months, over the summer of 2014 renewable energy generated more than 75% of total demand on many of those days. Not bad, for 5 years of relatively minor renewable energy subsidy euros provided by a (now ended) Feed-in-Tariff!

Germany renewable energy generation for the first 10 months of 2014 courtesy of the Fraunhofer Institute

Another benefit of the switch to renewable energy was the added billions of euros of economic activity generated annually by European solar panel and wind manufacturing companies like Vestas, SolarWorld, Siemens, ABB, and the jobs created for hundreds of SME renewable energy installation companies in the country.

Exports of German solar panels and wind turbines went through the stratosphere once Germany proved to the world that solar and wind could replace lost nuclear power generation capacity at a much lower cost than building new, multi-billion euro, nuclear or coal-fired power plants with their massive footprint on the land and their obscene water usage levels.

Germany renewable energy power generation change (in absolute terms) for the first 10 months of 2014 compared to the first 10 months of 2013. Image courtesy of the Fraunhofer Institute

For Germany, installing their own solar, wind and biomass power plants proved to the world that large-scale renewable energy could add huge capacity to a nation’s electrical grid and that different types of renewable energy could work together to balance the over-hyped ‘intermittency problem’ of renewable energy.

It turns out that in Germany, during the long, hot days of summer when solar panels are putting out their maximum power the wind actually tapers off — but at night the wind blows at a very reliable rate. Karmic bonus! That about covers the summer months.

During the winter months in Germany, the wind blows day and night and adds significant amounts of reliable power to the national grid.

Germany solar and wind energy are complementary, helping to stabilize the German electricity grid without adding pollution to the air. Image courtesy of the Fraunhofer Institute

And now, all of that renewable energy capacity is operating without FiT subsidy — quite unlike the coal, nuclear, and oil and gas power generation in the country which require huge and ongoing subsidies every day of the year to continue operations. That’s every day since 1946, meine Freunde!

Also a factor with nuclear and coal-fired power plants are the healthcare spending to combat the adverse health effects of fossil fuel burning/air pollution on humans and animals, on the agriculture sector, and the huge security infrastructure that is necessary to counter the potential theft of nuclear materials, to defeat possible nuclear terrorism and prevent nuclear proliferation.

While the rest of Europe (with the exception of notables like Norway, Sweden and Luxembourg) wallowed in recession or near-recession since 2008, the German economic powerhouse not only set global export records year-on-year, it bailed-out numerous other EU economies like Greece, Spain, Portugal, Italy, and others, and began an unprecedented domestic renewable energy program. And now, Germany is an electricity net exporter.

That’s heady stuff, even for this industrious nation of 82 million.

Germany imports and exports of electricity 2001-2014. Image courtesy of the Fraunhofer Institute

Where to next?

Not only has Germany added many TeraWatt hours (TWh) of clean, renewable energy to its electrical grid to replace lost nuclear power generation, it is now an electricity net exporter — raking in multi-millions of euros per year at present — and make that an electricity exporting superpower if they ever decide to revive their now defunct Feed-in-Tariff subsidy for renewable energy.

Replacing coal with renewable energy in Germany:

If Germany revived the previous FiT regime for 5 more years, *all lignite-fired (brown coal) electrical power generation* could be eliminated within 10 years.

If Germany revived the previous FiT regime for 10 more years, *all coal-fired electrical power generation* (not just lignite coal) could be eliminated within 10 years.

Replacing coal with renewable energy in Germany would save millions of Germans (and Polish, Swiss, Austrians, and others living downwind of German smokestacks) from breathing toxic lignite-fired air pollution. Think of the health care savings and the taxes that must support it, especially as their demographic ages. Some people believe that the health care savings alone could far exceed the cost of any FiT subsidy.

Not only that, but as a result of leaving coal behind, historic buildings, concrete bridges and roadways would require less maintenance to repair the spalling caused by the acid rain from coal burning. Additionally, Germany would save the millions of litres of water consumed annually by the coal industry.

Replacing coal with renewable energy in Germany would create thousands more jobs for solar, wind, and biomass manufacturing and construction. And the agriculture sector would begin to show ever-improving crop outputs. And, clean air for all visitors, expats and German citizens to breathe!

A note about (renewable energy) Hybrid power plants

So-called Hybrid power plants offer the best of both worlds in the renewable energy space by providing plenty of electricity day and night. This Hybrid power plant uses solar panels and wind turbines, while others can incorporate biomass or hydro-electricity dams, along with wind or solar, or both.
Hybrid power plants provide electricity day and night.

An energy policy stroke of genius for Germany could come in the form of a new subsidy (a FiT or other type of subsidy) that could be offered to promote the installation of Hybrid power plants — whereby 30% of electricity generated at a given power plant site would come from solar and the balance could come from any combination of wind, biomass, or hydro-electric generation. (30% solar + 70% various renewable = 100% of total per site output)

As long as all of the electrical power generation at a site is renewable energy and it works to balance the intermittency of solar power — it should qualify for the (hereby proposed) Energiewende Hybrid Power Plant subsidy.

When all the different types of renewable energy work in complementary fashion on the same site, energy synergy (the holy grail of the renewable energy industry) will be attained.

More jobs, billions of euros worth of electricity exports to the European countries bordering Germany, better agricultural outputs, lower health care spending and less environmental damage — all at a lower subsidy level than coal and nuclear have enjoyed for decades — are precisely why Germans should renew their commitment to renewable energy.

Seriously, what’s not to like?

Recommended Articles:

 

G20 Brisbane 2014 Hints at Eliminating Fossil Fuel Subsidies

by

As the G20 Brisbane 2014 wraps up, leaders discussed the eventual elimination of the massive global subsidies paid to the fossil fuel industry which topped some $600 billion dollars last year, slightly more than last year’s $550 billion and 2012′s $500 billion.

Meanwhile, non-polluting renewable energy continues to receive peanuts — well under $100 billion dollars worldwide in 2014.

At the G20 Brisbane 2014 Summit leaders discussed elimination of the massive $600 billion dollars subsidy paid to the fossil fuel industry in 2014.
At the G20 Brisbane 2014 Summit leaders discussed elimination of the massive $600 billion dollars subsidy paid to the fossil fuel industry in 2014.

Clean energy does have it’s detractors, similar to the criticisms by the detractors of aircraft travel 100 years ago when people traveled by ship or by train. But, “The times, they are a changin’,” rings true in this century too!

“We do it this way, because we’ve always done it this way,” is no longer good enough. The fossil fuel industry provides the fuel for the world’s transportation industry and it is the most heavily subsidized industry on the planet and has been given carte blanche to operate in any way it sees fit.

Fine. We needed the oil. Whatever has taken place was done with our tacit approval. But with the very real effects of climate change now becoming clearer to us with each passing year, not to mention the more poignant effects on human health by breathing polluted air and drinking fracked water, fossil now requires a relook.

It’s not just climate and individual health concerns that are driving the discussion, health care systems around the world are now realizing that a good portion of disease and mortality are directly relatable to the environment. In major industrialized nations, billions of dollars in health care dollars are spent to repair the damage to people’s health from fossil fuel emissions. It’s not a few billion ‘here and there’ it may be as high as 1/3rd of all health care spending in the world’s most industrialized nations.

The cost of fossil is becoming a very large number for even the richest countries

  • Climate: For each 1 degree of climate increase the world will spend 1 trillion dollars to counter drought, sea level rise, abnormal storm activity and land remediation.
  • Health: Our sophisticated health care systems can now argue with statistical proof that fossil fuel burning contributes to human mortality and disease in a much more precise manner than in decades past.
  • Costs: $600 billion dollars in subsides is a lot for the world’s nations to bear. And that number continues to grow each year as all of the ‘easy oil’ and ‘easy gas’ is already tapped and locations with special extraction methods must be employed.

From the G20 Energy Sustainability Working Group 2014, Co-chair’s Report

Inefficient fossil fuel subsidies

G20 members reported to G20 finance ministers in September on their progress towards meeting the G20 commitment, initially made at the 2009 Pittsburgh summit and reaffirmed at subsequent summits, to “ rationalize and phase out inefficient fossil fuel subsidies that encourage wasteful consumption over the medium term ”. The ESWG benefitted from updates on the preparations for the first round of voluntary peer reviews involving the United States and China. A second round of voluntary peer reviews involving other G20 countries is expected to commence in mid – 2015. Germany has announced it will participate in the second round.

In response to a request from leaders at the 2013 Saint Petersburg summit, the ESWG tasked the World Bank Group, in consultation with other relevant international organisations, to prepare a report on transitional policies to assist the poor while phasing out inefficient fossil fuel subsidies that encourage wasteful consumption. The World Bank Group provided regular updates to the ESWG through the year and the final report was delivered to finance ministers in September. — Read the full report here.

It looks like ‘business as usual’ is headed for change in the energy industry

Only fossil fuel superpowers Australia (coal), Canada (coal, oil, tar-sands petroleum, fracked gas and conventional gas, deepsea oil extraction), and Saudi Arabia (oil), alone out of the G20 did not see fit to endorse the Energy Sustainability Working Group 2014 report.

No surprise there. However, the day is coming when the costs of not switching to clean energy will far exceed the costs of switching. If all energy subsidies were magically and instantly removed — that day would be today.