European Electric Vehicle Sales up 79% from 2013

by John Brian Shannon John Brian Shannon

What a difference a year makes. Electric Vehicles, once a novelty in Europe, seem to have hit the mainstream. No doubt there is still plenty of room to grow as even with the latest sales increase, EV’s only make up only a tiny fraction of the annual 7 million car sales in the European Union.

Overall, EV sales in Europe are up 79% from the same time period last year, although within individual nations there are wide disparities in EV adoption.

NORWAY — Although Norway is not an EU-member-country, it is part of Europe. And the earliest adopter of electric vehicles in Europe is Norway, registering only 2373 EV sales in the first half of 2013.

Now compare that to the 9950 EV sales Norway logged in the first half of 2014. That’s a 302% increase H1 2013 to H1 2014. In a country of only 5 million people that’s a pretty significant sign that EV’s are gaining wider acceptance.

TESLA has just completed the installation of dozens of free-to-use SuperCharger stations in Norway and you can find them in almost every Norwegian city, town and hamlet. A big draw with the SuperCharger system is that a Tesla Model S can fully charge in about 30 minutes from dead flat. Of course, if you’re just ’topping-up’ your Tesla battery you may not have time to finish your latte before you’re on the road again.

Prior to the latest SuperCharger installations, it took some careful driving to drive the length of Norway and not run the battery down, but one can now drive across the entire country of Norway with hardly a thought about charging locations, all of which are easily located on the huge Tesla LED dashboard display.

The most popular EV’s in Norway are the Tesla Model S and the Nissan LEAF.

GERMANY – Posting respectable numbers but nowhere near the example set by Norway, EU-member-nation Germany has almost doubled their first half EV sales compared to the same time period in 2013. German’s bought 2382 EV’s in H1 of last year, ramping up to 4230 in H1 of this year.

United Kingdom — Another European country that is still not part of the EU, the UK registered 1168 EV’s in H1 of 2013, and in H1 of 2014 some 2570 EV’s were registered.

Both the German and UK drivers prefer the Tesla Model S, the BMWi3 and the Nissan LEAF, although the new Renault Zoe is gaining acceptance as a very affordable electric vehicle.

FRANCE – French citizens buy a lot of EV’s, but numbers were slightly down compared to last year. Still, Renault continues to add affordable new EV models to its lineup. In 2013, there must have been a lot of ‘pent-up’ EV demand, as France registered 7293 EV’s in H1 of 2013, but in H1 of this year France added only 6405 Electric Vehicles to the country’s roads.

The most popular EV’s in France are the Renault Twizy, the new Renault Zoe and the Nissan LEAF.

Electric Vehicle sales soar in Europe as petrol prices move past E1,84 per litre.
Electric Vehicle sales soar in Europe as petrol prices move past € 1,89 per litre in some jurisdictions. Image courtesy of CleanTechnica.

While some countries in the EU could not match (non-EU-member) Norway’s total EV sales, some statistically significant numbers are showing for some EU nations.

The Netherlands for one, zipped up from 437 EV sales in the first half of 2013, to 1149 units in the first half of this year. While Austria went from 252 to 709 H1 to H1 and Belgium went from a lowish 195 first half EV sales up to 629 in H1 of 2014.

As far as the top electric cars, they were the Nissan Leaf (7,109), Tesla Model S (5,330), and Renault Zoe (3,669). Tesla Model S sales were largely in Norway (over 3,000 there), while Renault Zoe sales were largely in France (over 1,600 there). – CleanTechnica.com

All in all, some respectable increases with only France as the spoiler in the Year-on-Year H1 comparison.

Here are the total registrations for H1 2013 and H1 2014.

  • TOTAL EV sales all EU countries (first half of 2013) — 15591
  • TOTAL EV sales all EU countries (first half of 2014) — 27946
  • TOTAL EV sales increase all EU countries year-on-year (first half comparison) — 79%

Even with all that good news, it’s important to remember that while EV sales are showing dramatic improvements in some European nations, electric vehicles have not yet reached 1% of new car sales.

The one bright spot, now that more EV’s are hitting the roads is that public charging stations are being installed at at phenomenal rate. The Netherlands public charging system is geared to a maximum travel distance of 65 kilometres between chargers. That puts electric vehicles on an even footing with petrol stations in the country.

And, unlike a petrol car, you can always charge your car at home or at the office just by plugging it in to an ordinary wall socket, although this slow-charging mode may take a few hours.

Another positive is that affordable new EV models are hitting showrooms, giving drivers more choices and a wider range of electric vehicles to choose from. With names like Tesla, BMW, Toyota, Nissan, Renault, Volvo, Ford and Porsche solidly behind electrified vehicles, reliability issues are non-existent.

Here are some fun facts for European residents to ponder when considering the switch from a petrol engine car to an electric vehicle.

Here are the petrol prices per litre for some selected European nations, as of August 11, 2014:

  1. Austria — € 1,35
  2. Belgium — € 1,61
  3. Denmark — € 1,71
  4. Finland — € 1,63
  5. Germany — € 1,62
  6. Netherlands — € 1,79
  7. Norway — € 1,89
  8. Portugal — € 1,62
  9. Sweden — € 1,55
  10. United Kingdom — € 1,61

To convert these per litre prices, valued in euros – into their U.S. equivalents, we can use the very rough calculation of 4 litres per US gallon (which is how petrol/gasoline is sold in the United States) and 1.33 USD to 1 euro (current as of August 11, 2014).

For the Norwegian example, we can see that 4 litres of petrol (to roughly equal 1 US gallon) will cost you 7.57 euros – and converting that to US dollars gives you $10.14 per US gallon. Many US citizens use 10 gallons of petrol (or more) every day…

In Austria 1 US gallon of petrol (rough calculation) will set you back $7.18 in US dollars.

For those who elect to charge their EV at home for about 1-3 euros per day, you will have no need to stop at a petrol station and pay up to € 1,89 per litre of petrol, times how many litres you burn per day. And it’s doubtful that petrol prices will be dropping any time soon.

Not only are EV’s pollution-free, reliable and extremely low maintenance – spending 1-3 euros per day to recharge your EV battery at home (or nothing if you charge it at a free-to-use public charging station) vs. 5-10 euros per day for petrol depending on the size of the petrol engine – can really add up over the course of a year.

I strongly suspect that 2015 EV sales numbers will greatly surpass these first impressive baby-steps taken by electric vehicle manufacturers and their customers. By 2020, it would be reasonable to expect a full 10% of new vehicle registrations to be of the electrified vehicle variety.

Japan agrees with ‘All of the Above’ Energy Policy

by John Brian Shannon John Brian Shannon

President Obama’s famous All of the Above energy policy released during his first term and perfected in his second term seems to have gained some attention and perhaps some followers around the world. The latest is Japan, which has decided to embrace more and different types of energy to replace the lost nuclear power capacity since the Fukushima incident.

Prior to the earthquake and tsunami of March 4th, 2011, Japan received 29% of its electricity from its nuclear reactor fleet. Subsequently, many of the country’s 54 nuclear power plants were shut down for inspection and stress testing, and some have been scheduled for complete decommissioning at a total cost of well over $100 billion dollars, but possibly approaching $1 trillion dollars over 50 years if the damaged reactors at the Fukushima-Daiichi nuclear power plant begin acting up and leaking even more than they have. Which could happen.

With almost 30% of their electricity production permanently unavailable or temporarily offline, the ever-industrious Japanese are looking to a better energy policy — one that will not leave them dependent on foreign politics, international trade disputes or shortages. Energy cost is a primary concern.

The good news is that Japan hopes to hit 20% of total electricity demand with renewable energy by 2030.

Japan’s energy choices include solar

Extensive research into solar utility-scale installations and rooftop solar for residential use in Japan have netted some amazing results. Japan ranks fourth among the nations with the most amount of solar capacity installed and continues a massive solar installation campaign. Some 10 Gigawatts of solar are being added to Japan’s grid this year.

Some farmers in Japan are finding that they can make more money with much less toil by turning their rice paddies into solar farms. In other cases, huge blocks of solar panels are mounted on floating pontoons in sheltered bays and lakes.

Japan-Energy-Transition-slide-1
Japan shows a clear preference for solar power, even as it experiments with other renewable energy such as wind, tidal, hydrogen and methane hydrate ice.

Wind energy in Japan

Wind energy is making strides in Japan and the future of that is under discussion. However, Japan feels a need to protect its tourism industry and does not want monstrous turbines cluttering up shoreline tourist areas. Nevertheless, the country is forging ahead with plans for the largest offshore wind farm on the planet in non-tourist regions of the country.

Tidal energy

Japan is a pioneer of tidal energy, with some locations producing power via underwater propellers anchored to the ocean floor via cables allowing them to be suspended in the water near the sea bottom safely away from ships hulls.

Undersea Methane Hydrates

Japan has sent ships to the Arctic ocean in recent years to mine methane hydrate crystals that line the sea floor for hundreds of miles in all directions. It turns out that just off Japan’s coast there is a gold mine of methane “ice” also known as clathrate (more specifically, clathrate hydrate) just sitting there waiting to be picked up. In fact, some successful prototype operations have been reliably producing power in Japan, using only locally-mined clathrate.

It is a clean burning fuel, as methane clathrate hydrate composition is (CH4)4(H2O)23, or 1 mole of methane for every 5.75 moles of water, corresponding to 13.4% methane by weight. There is nothing else to it. No sulfur, no nitrogen, no trace contaminants. Pure fuel mixed with water ice.

“Japan hopes that the test extraction is just the first step in an effort aimed at bringing the fuel into commercial production within the next six years. That’s a far faster timetable than most researchers have foreseen, even though there is wide agreement that the methane hydrates buried beneath the seafloor on continental shelves and under the Arctic permafrost are likely the world’s largest store of carbon-based fuel. The figure often cited, 700,000 trillion cubic feet of methane trapped in hydrates, is a staggering sum that would exceed the energy content of all oil, coal, and other natural gas reserves known on Earth.” – National Geographic

Hydrogen fuel for electrical power production and for vehicles

As a clean burning fuel, hydrogen shows great promise. The only catch with this fuel are the costs associated with splitting ocean water into its constituent molecules, which, after you filter out the salt and any contaminants is; 1 hydrogen atom + 2 oxygen atoms = 1 molecule of water. Using electrolysis to convert vast quantities of water into hydrogen takes a huge amount of electricity, which is fine if it can be had cheaply enough. With the advent of solar power gird-parity, hydrogen production suddenly looks attractive at a large scale.

“Now that Toyota Motor says it will release mass-production fuel-cell vehicles powered by hydrogen, Japan has set an even bigger goal of making hydrogen a main energy source for the nation’s electric utilities. The nation’s first “hydrogen energy white paper,” released Monday, calls on the country to become a “hydrogen economy” by adopting the fuel for utility power generation. The paper was produced by the government-affiliated New Energy and Industrial Technology Development Organization.” – Wall Street Journal

We are at a unique period of human history where doors that were once solidly closed are now opening. Our energy future will be more diverse and cleaner for those nations and corporations that are open-minded enough to see the possibilities of clean and renewable energy.

Although there have been some failures in the business of renewable energy (as in any new field of endeavor) things renewable energy are starting to gain traction and acceptance not only by the public, but by policymakers around the world.

Japan, after initially reeling from the tsunami and Fukushima incident, has profoundly embraced solar and wind power and experimented with the promising tidal energy technology and has advanced clean burning energy solutions such as undersea methane hydrates and hydrogen fuel.

Certainly, fossil fuels have their place and they will be with us for some time to come. However, rather than tying ourselves to One Big Energy source (fossil fuels) an All of the Above approach may turn out to be the best, long-term solution after all.

The Solar / Water nexus

by John Brian Shannon John Brian Shannon

Separate from discussions about airborne coal power plant emissions,  are the high levels of water usage — proportional to the downstream water loss experienced by farmers, citizens, and other water users such as wildlife — caused by obscenely high coal power plant water requirements.

Water used by power plants
At a time of increasing water scarcity, water use by power plants varies widely. In some regions, that different water usage level is becoming an important part of the decision-making process for planners. climaterealityproject.org

In some regions of the world, there exists acute competition for water resources as coal power station operators vie for water with agricultural, urban, and other users of water, while areas with plentiful water find their power plant choices aren’t constrained by water supply issues at all.

The era of increasing water shortages and frequent drought seem here to stay, and the huge volumes of water required by some power plants is becoming a factor in the decision-making process as to which type of power plant is most suited for any given location.

Therefore, the conversation is now arcing towards the local availability of water and thence, to the most appropriate type of power station to propose for each location.

So let’s take a look at the water usage of five common types of power plants:

  • Coal: 1100 gallons per MWh
  • Nuclear: 800 gallons per MWh
  • Natural gas: 300 gallons per MWh
  • Solar: 0 gallons per MWh
  • Wind: 0 gallons per MWh.

While 1100 gallons per MWh doesn’t sound like much, America’s 680 coal-fired power plants use plenty of water especially when tallied on an annual basis.

The largest American coal-fired power station is in the state of Texas and it produces 1.6 GW of electricity, yet it is located in one of the driest regions on the North American continent. Go figure.

At one time as much as 55% of America’s electricity was produced via coal-fired generation and almost every home had a coal chute where the deliveryman dropped bags of coal directly into the homeowner’s basement every week or two.

But in the world of 2014, the United States sources 39% of its electricity from coal power plants and this percentage continues to decline even as domestic electricity demand is rising.

Texas Utility Going Coal-Free, Stepping Up Solar

In a recent column by Rosana Francescato, she writes;

“El Paso Electric Company doubles its utility-scale solar portfolio with large projects in Texas and New Mexico. As if that weren’t enough, the utility also plans to be coal-free by 2016.” — Rosana Franceescato

She goes on to tell us that EPE serves 400,000 customers in Texas and New Mexico and gives credit to the foresighted management team. El Paso Electric is already on-track to meet the proposed EPA carbon standard. Their nearby 50 MW Macho Springs solar power plant about to come online is on record as having the cheapest (PPA) electricity rate in the United States.

This solar power plant will displace 40,000 metric tonnes of CO2 while it powers 18,000 homes and save 340,000 metric tonnes of water annually, compared with a coal power plant of the same capacity. That’s quite a water savings in a region that has been drought-stricken in 13 of the last 20 years, only receiving 1 inch of rainfall per year.

In February 2014, EPE signed an agreement for the purchase all of the electricity produced by a nearby 10 MW solar installation that will 3800 homes when construction is completed by the end of 2014. And they are selling their 7% interest in a nearby coal power plant.   Now there’s a responsible utility company that makes it look easy!

Solar’s H2O advantage

The manufacture of solar panels uses very little water, although maintenance of solar panels in the field may require small amounts of water that is often recycled for reuse after filtering out the dust and grit, while other types of energy may require huge volumes of water every day of the year.

Wind’s H2O advantage

Wind turbines and their towers also use very little water in their construction and installation, although some amount of water is required for mixing with the concrete base that the tower is mounted on at installation.

In the U.S. which is facing increasing water shortages and evermore drought conditions as global warming truly begins to take hold in North America, switching to a renewable energy grid would have profound ramifications. Estimates of water savings of up to 1 trillion gallons could be possible if utilities switched to 100% renewable wind and solar power with battery backup on tap for night-time loads and during low wind conditions.

Midway through that transition, the present water crisis in the U.S. would effectively be over. Yep, just like that. Over.

China’s Looming Water Crisis

China’s looming water crisis has planners moving to taper their coal and nuclear power generation construction programmes. You can’t operate these plants without the required water, even for a day. Yet, the people who live and grow crops and raise livestock in the surrounding areas need access to undiminished water supplies. What good is a coal power plant if everyone moves away due to a lack of water?

There are very legitimate reasons nowadays to switch to solar and wind generation — and the reduction of airborne emissions used to be the prime consideration and may remain so for some time, however, massive reductions in water consumption might now prove to be the dealmaker in some regions — and the emission reductions may now be viewed as the happy side benefit! Wow, that’s a switch!

Of course, the benefits of solar and wind power will still include no ongoing fuel costs, very low maintenance and the lowest Merit Order ranking (the wholesale kWh price of electricity) of any energy.

Granted, there are locations where renewable energy doesn’t make sense, such as some Arctic or Antarctic regions. In these places solar simply isn’t worthwhile and wind levels may not be sufficient to make the economic case. Biomass may be a partial solution in these areas and there may be the opportunity for geothermal energy — although finding ‘hot rocks’ underground near population centres is much more unlikely than many people may realize.

But in the future, the vast majority of locations will be powered by renewable energy paired with a battery backup or a conventional grid connection — or both. And its a future that’s getting closer every day.

Sustainable Energy Policy to save EU €81 bn/year by 2030

by John Brian Shannon John Brian Shannon

Accenture says a sustainable pan-European energy policy could save consumers €27 to €81 billion per year by 2030 and result in a cleaner utility grid model.
Accenture says a sustainable energy policy could save European electricity consumers €27 to €81 billion per year by 2030.

A recent report authoured by Accenture for EURELECTRIC says that if European nations work together towards an integrated and pan-European energy policy it could generate savings for electricity consumers between €27 to €81 billion per year by 2030 and the result would be a cleaner utility grid model.

Accenture is calling on European governments to phase-out renewable energy targets and renewable energy programme spending — replacing both with a carbon trading scheme, one that essentially rewards low carbon energy producers and penalizes high carbon energy producers.

All of this is happening during a time of unprecedented change within the European energy industry.

In the fascinating German example, that country shut down much of its nuclear power generation rather than spend multi-billions to upgrade its aging and oft-troubled nuclear fleet. Consequently, Germany is now burning record amounts of coal and natural gas to replace that lost generation capacity — in addition to the installation of record amounts of wind, solar and biomass capacities to the German grid.

In the decades following WWII, German utility companies operated in a cozy, sheltered environment. But few knew how expensive it was to operate and maintain on account of massive government subsidies and preferential treatment of the utility industry. German consumers never had it so good and likewise for sleepy German energy giants, which have now awoken to find that the energy picture has changed dramatically in little over a decade.

Hence, even more subsidies were employed to counter for the loss of German nuclear power via Feed-in-Tariffs (FiT) for wind, solar and biomass capacity additions to the grid, partially financed by a hefty nuclear decommissioning fee added to every German electricity bill.

At least in Germany, it turns out that while nuclear has practically disappeared, and with no fuel costs to worry about, renewable energy combined to lower German electricity rates during the hours of the day that wind and solar are active, causing downward pressure on electricity rates. At the same time, German utilities burned record amounts of brown coal and expensive Russian natural gas to meet total demand which caused upward spikes in the electricity rate during the hours of the day that coal and natural gas were required to meet total demand.

In simple terms, the removal of nuclear from the German energy mix has resulted in higher electricity rates — not because some of that capacity was replaced by renewable energy — but because significant fossil fuel burning was required to meet demand, combined with nuclear decommissioning costs.

Were German politicians and their voters wrong to shut down the country’s nuclear power plants? Not a bit. Germany’s nuclear power plants were problem-plagued and the costs to bring all 19 reactors up to modern standards were prohibitive. Shutting down the German nuclear fleet was unfortunate perhaps, but necessary.

German consumers continue to yearn for clean energy and low energy costs. Unsurprisingly, the German public has reacted to energy that seems to be getting dirtier and more expensive by the day, and the massive nuclear decommissioning costs which will continue long past 2022, perhaps until 2045.

After the loss of nuclear, the German energy grid initially became cleaner with the addition of wind and solar, but then became dirtier than ever as record amounts of brown coal and natural gas were burned! Es ist zum weinen.

And that’s just the story in Germany. Every European partner country has its own story to tell in an electricity market that is undergoing unprecedented and rapid change — and each country’s electricity market is as different from each other as they are from the German example. Although each story is different, the net result is the same; The energy industry across Europe must adapt to the loss of (some) nuclear and the growing consumer disenchantment with fossil fuels, and to the huge consumer driven additions of renewable energy to the grid. And it must be done in a cost-effective way or utility companies and their respective governments will face consumer backlash.

Utility companies shocked by the unprecedented and rapid changes thrust upon them by nuclear shutdowns and the multiple demands of consumers are hoping that a harmonized set of rules across Europe will allow them to meet rising electricity demand.

If you look at what utilities really want, it is one harmonized set of rules across Europe. Europe is one market; it’s one playing field, and utilities really benefit from a harmonized set of rules.

It is like playing football; if you play football,you don’t want different rules for different parts of the field. — Sander van Ginkel, Managing Director, Accenture Utilities

“European electricity prices are rising fast. As a result, the overall increase in energy expenditure is putting mounting pressure on residential end-users and undermining the competitiveness of European industry. The implementation of the energy transition has so far lacked optimization on a pan-European scale. Without a concerted effort to more effectively manage the costs of the energy transition, expenditure on electricity and gas in 2030 could be 50 percent higher than it is today.

A step-change in the reshaping of the European energy system is needed — by reconfirming the European power sector’s support for Europe’s sustainability agenda through an optimized approach that avoids unnecessary costs. Doing so would put significant benefits within reach: our analysis shows that implementing an integrated set of levers could generate net savings of €27 to €81 billion per year by 2030. Such savings could be achieved by further integrating energy markets and the supporting regulatory framework at a European level and by leveraging flexibility throughout the electricity value chain — provided utilities, governments, regulators and consumers can forge a joint commitment to work together.” — Quoted from the Accenture/EURELECTRIC report

Accenture’s report says that Europe’s utilities must meet customer demands for more energy, but make it cheaper and cleaner and that the existing grid model will fail unless changes are made. Accenture has suggested four main ways to achieve these goals.

  1. Optimizing renewable energy systems
  2. Market integration
  3. Active system management
  4. Demand response and energy saving

“The restructuring of the European electricity system will have to be carried out cost-effectively if we are to gain the support and trust of energy consumers. This study shows that, with the right policies in place, the energy transition could cost each European citizen over € 100 less a year than if we continue with business as usual.” Hans ten BERGE Secretary General. Union of the Electricity Industry – EURELECTRIC

It seems reasonable that all of Europe’s utility companies acting together could arrive at a better solution. Complementary and overlapping energy capabilities may prove to be the model that works for Europe, as opposed to the direct competition model favoured in the U.S.

A carbon tax which reflects the true societal costs of fossil fuels could be a just solution to Europe’s present grid malaise. However, it is doubtful that a carbon tax will ever reflect the true cost to society of fossil fuels — which have been estimated to cost €30 per tonne of CO2 — but a carbon mechanism may well provide the impetus to foster a new and better European energy paradigm.

No matter the how the equation looks, it is sometimes only the answer that matters. A cleaner energy mix and reasonable electricity rates within a stable electricity grid is something that all sides can cheer for. How very European!

See the Accenture video (click here)

Smoothing the Flow of Solar Power in California

by Dr. Imre GyukU.S. Department of Energy.

This EnerVault flow battery stores power from the solar panels and releases it as needed. | Photo courtesy of EnerVault.
This EnerVault flow battery stores solar power from the solar panels and releases it as needed. | Photo courtesy: EnerVault.
________________________________________

Yesterday, an almond grove in California’s Central Valley hosted the opening of the world’s largest iron-chromium redox flow battery. Originally pioneered by NASA, these flow batteries are emerging as a promising way to store many hours of energy that can be discharged into the power grid when needed.

Traditionally, electric generation follows the demands of the daily load cycle. But as more sources of renewable generation such as solar and wind are integrated into the power grid, balancing demand and generation becomes more complicated. With energy storage, we can create a buffer that allows us to even out rapid fluctuations and provide electricity when needed without having to generate it at that moment.

Unlike other types of batteries, which are packaged in small modules, iron-chromium flow batteries consist of two large tanks that store liquids (called electrolytes) containing the metals. During discharge, the electrolytes are pumped through an electrochemical reaction cell and power becomes available. To store energy, the process is reversed. With Recovery Act funding from the Department’s Office of Electricity Delivery and Energy Reliability, California energy storage company EnerVault has optimized the system to create a more efficient battery.

This pilot project in Turlock, California, can provide 250kW over a four-hour period, helping to ensure the almond trees stay irrigated and the farm is able to save money on its electrical bills.

This is how the system works:

The almond trees are most thirsty between noon and 6 p.m. The farm uses nearly 225 kW of electricity to power the pumps that get the water to the trees. Onsite solar photovoltaic panels can supply 186kW at peak power, not quite enough energy for watering the trees throughout the day. The balance could be taken from the grid, but grid electricity is most expensive from noon to 6 p.m.

This is where storage enters.

At night electricity is inexpensive, so the batteries begin to charge up. In the morning the solar panels help top them up the rest of the way. Then, during expensive peak periods, the needs of the trees are satisfied by solar and flow batteries — renewable energy optimized through storage.

While the Turlock facility is a unique application, flow batteries are not just for thirsty almond trees. For example, they could be an especially good solution for small island grids such as Hawaii, where severe wind ramps or rapid changes in photovoltaic generation can destabilize the local grid, or at military bases that need to maintain mission-critical functions.

Similarly, flow batteries paired with renewables can be used in a resilient microgrid that can continue to operate when disasters strike and power outages ensue.

In the face of changing climate conditions, energy storage and grid resiliency have become more critical than ever. Flow battery technology is expected to play a vital role in supporting the grid both in California and across the U.S.

Additional Information:

Dr. Imre Gyuk
Dr. Imre Gyuk is the Energy Storage Program Manager, Office of Electricity Delivery and Energy Reliability.
HOW DOES IT WORK?
Iron-chromium flow batteries store liquids, called electrolytes, that are pumped   through an electrochemical reaction cell to release power. The process is reversed in order to store energy. This means that the batteries can store energy from the grid, and release it when the load is heaviest.