The Difference between Biofuels and Fossil Fuels

Originally published at
by John Brian Shannon John Brian Shannon

The burning of fossil fuels over the past 90 years has released gigatonnes of CO2 into the atmosphere over that time.

Previous to the large-scale commercial extraction of petroleum beginning around 1920, the carbon embedded within coal and oil was permanentl­y stored undergroun­d and had stayed there since the time of the dinosaurs.

It wasn’t going anywhere near the surface of our planet or into our atmosphere anytime in the next billion years — until mankind started bringing it up to the surface and burning it

The burning of fossil fuels extracted from deep below the surface of the Earth is a huge source of new CO2 introduced into our present-day atmosphere. — John Brian Shannon, Biofuel Central

Plant-based biofuels on the other hand, utilize plant matter that grows in our 21st-century — plants which absorb CO2 out of our modern-day atmosphere every day of the year­

Jatropha tree
Jatropha fruit is toxic, but it has high oil content and it grows in semi-arid regions making it suitable for biofuels. In developing nations, jatropha plantations provide plenty of work for labourers around harvest time.

Jatropha trees, for instance, live 40 years. Only the plentiful fruits (several tonnes per hectare) are harvested each year for processing into biofuels while the rest of the tree continues to draw CO2 out of the air every day of the year. Because that’s what trees do.

After breathing in CO2 and exhaling oxygen for 40 years, at the end of that tree’s life almost exactly the amount of CO2 it captured during its lifetime returns to the environmen­t, making the Jatropha’s carbon footprint, zero. (Exactly what it captured, it released, over its 40 year lifetime)

Then, new Jatropha trees are grown and a new carbon-neutral process begins.

Not so for fossil fuels. Carbon-heavy coal and oil are a huge source of new carbon that we bring up from deep undergroun­d which, as we burn it, continuously adds new CO2 to our atmosphere

Therefore ALL fossil fuel burning adds to the overall CO2 load of our atmosphere – while plant based biofuels are CO2-neutral, as they merely recycle the same carbon dioxide, many times over.

Where am I going with this?

We should blend our fossil fuels with CO2-neutral biofuels (50/50) to taper our dinosaur era, petroleum based, CO2-additions to the atmosphere.

Biofuels now come in three generations

  • 1st generation biofuels were the first on the market, but required massive subsidies to be economically viable.
  • 2nd generation biofuels were next-up and as the technical problems are now solved, new 2nd generation biofuels are surging ahead and show dramatic CO2 reductions.
  • 3rd generation biofuels are in the pilot programme stage at this point, but early indications are that negative CO2 emissions may be possible — as megatonnes of waste carbon dioxide from nearby factories are used in algae biofuels production and the profitability of this new generation of biofuels (even without subsidies) seems likely.

The three generations of biofuels

Corn, palm tree, and sugar-cane are examples of 1st generation biofuel crops. They are poor choices for biofuel production as they have their own environmental negatives attached to them and they require massive subsidies to compete in the marketplace.

1st generation biofuel crops require billions of gallons of precious water, plenty of fertilizer, pesticides and land management.

And it goes without saying of course, that replacing food crops with biofuel crops is a very bad idea.

Fortunately, 2nd generation biofuel plants grow in conditions and areas which are inhospitable for food crops.

Some examples of 2nd generation biofuel plants which grow in semi-arid regions are; Jatropha, Millettia and Camelina and the cultivation of these provide plenty of jobs for developing nation labourers.

“China has set aside an area the size of England in which to grow 2nd generation biofuel crops.” — Will Thurmond, Biodiesel 2020

Biofuels that are produced with algae or enzymes are known as 3rd generation biofuels and are the most efficient way of producing biofuels, using only water, plant matter, relatively small amounts of algae and microscopic enzymes to do the work.

And talk about good karma, algae thrive when CO2 is added to the conversion chamber (called a ‘biofuel reactor’ which is basically a 500,000 gallon soup pot) and helps to convert the ingredients into high quality gasoline.

In the new algae-to-gasoline plants, tonnes of CO2 from nearby industry are added to the ingredient list to help boost the speed of the process and to increase the final amount of gasoline produced.

Like any other green plant, algae ‘eats’ the CO2 and emits pure oxygen just like the trees in your neighborhood.

Each batch takes 5 days and at continuous production that means CO2-eating and oxygen production is happening every day of the year.

Green gasoline inside clear plastic pipes. Algae requires four days of sunlight and mild temperatures to process the ingredient mix into pure gasoline. Wageningen University Integrated Sustainable Algae (InteSusAl) demonstration pilot project in the municipality of Olhão, in the Algarve region of southern Portugal. Image courtesy of AlgaePARC (Algae Production and Research Centre) at Wageningen University & Research Centre.

It’s better to continuously recycle a large amount of carbon-neutral plant-based CO2 (recycling it millions of times over) than to bring new carbon in the form of coal and oil to the Earth’s surface with it’s carbon-heavy load to burn it, thereby adding unfathomable gigatonnes of new CO2 to our 21st century atmosphere.

Yet another biofuel bonus

Boeing 787. Image courtesy of Boeing.
Boeing 787. Image courtesy of Boeing.

Lower CO2 emissions are a well-known bio-jet fuel benefit, regardless of which biofuel generation they hail from.

Boeing’s Sustainable Biofuels Research & Technology Program reported 80% lower CO2 emissions for camelina bio-jet fuel when compared to conventional jet fuel.

All 1st, 2nd, and 3rd generation biofuels are low carbon fuels (at the combustion stage) but only 2nd generation biofuels are economically viable at this point in time. New formulation 3rd generation biofuels look to have even lower CO2 emissions than the 2nd generation biofuels already on the market.

Depending on the type of biofuel crop employed, lowered CO2 emissions (as compared to conventional petroleum-based jet fuels) in the range of 50-80% are proven

New algae bio-jet fuels are showing CO2 emission reductions of better than 90% when compared to petroleum-based jet fuel.

There is every hope that within 10 years that new algae bio-jet fuel will prove to be CO2-negative as the algae requires huge volumes of carbon dioxide gas to grow at best possible speed.

Airline operators and the U.S. military note that the new bio-jet fuels extend engine life, emit less soot and smoke, and are easier on fuel system components such as fuel pumps and injectors

Notes about sugarcane:
Sugarcane moves from its present 1st generation biofuel ranking
to 2nd generation biofuel ranking if certain guidelines are followed.

Sugarcane is usually considered a 1st generation biofuel crop, but;

1) if farmers refrain from burning sugarcane fields after each harvest (twice yearly) and
2) if the rest of the plant (not just the ‘cane’ but also the roots and leaves) are converted to biofuels via a new type of cellulosic bioreactor, and
3) where sugarcane fields aren’t displacing food crops, sugarcane is an excellent choice for a high-yield 2nd generation biofuel.

IPCC says emissions must fall to zero by 2100

IPCC PRESS RELEASE — 2 November 2014

Concluding installment of the Fifth Assessment Report:
Climate change threatens irreversible and dangerous impacts, but options exist to limit its effects

COPENHAGEN, Nov 2, 2014 — Human influence on the climate system is clear and growing, with impacts observed on all continents.

If left unchecked, climate change will increase the likelihood of severe, pervasive and irreversible impacts for people and ecosystems. However, options are available to adapt to climate change and implementing stringent mitigation activities can ensure that the impacts of climate change remain within a manageable range, creating a brighter and more sustainable future.

These are among the key findings of the Synthesis Report released by the Intergovernmental Panel on Climate Change (IPCC) on Sunday.

The Synthesis Report distils and integrates the findings of the IPCC Fifth Assessment Report produced by over 800 scientists and released over the past 13 months – the most comprehensive assessment of climate change ever undertaken.

R. K. Pachauri, Chair of the IPCC

“We have the means to limit climate change,” said R. K. Pachauri, Chair of the IPCC. “The solutions are many and allow for continued economic and human development. All we need is the will to change, which we trust will be motivated by knowledge and an understanding of the science of climate change.”

The Synthesis Report confirms that climate change is being registered around the world and warming of the climate system is unequivocal. Since the 1950s many of the observed changes are unprecedented over decades to millennia.

Thomas Stocker, Co-Chair of IPCC Working Group I

“Our assessment finds that the atmosphere and oceans have warmed, the amount of snow and ice has diminished, sea level has risen and the concentration of carbon dioxide has increased to a level unprecedented in at least the last 800,000 years,” said Thomas Stocker, Co-Chair of IPCC Working Group I.

The report expresses with greater certainty than in previous assessments the fact that emissions of greenhouse gases and other anthropogenic drivers have been the dominant cause of observed warming since the mid-20thcentury.

The impacts of climate change have already been felt in recent decades on all continents and across the oceans. The more human activity disrupts the climate, the greater the risks. Continued emissions of greenhouse gases will cause further warming and long-lasting changes in all components of the climate system, increasing the likelihood of widespread and profound impacts affecting all levels of society and the natural world, the report finds.

The Synthesis Report makes a clear case that many risks constitute particular challenges for the least developed countries and vulnerable communities, given their limited ability to cope. People who are socially, economically, culturally, politically, institutionally, or otherwise marginalized are especially vulnerable to climate change.

R. K. Pachauri, Chair of the IPCC

“Indeed, limiting the effects of climate change raise issues of equity, justice, and fairness and is necessary to achieve sustainable development and poverty eradication. Many of those most vulnerable to climate change have contributed and contribute little to greenhouse gas emissions,” Pachauri said.“ Addressing climate change will not be possible if individual agents advance their own interests independently; it can only be achieved through cooperative responses, including international cooperation.”

Vicente Barros, Co-Chair of IPCC Working Group II

“Adaptation can play a key role in decreasing these risks,” said Vicente Barros, Co-Chair of IPCC Working Group II. “Adaptation is so important because it can be integrated with the pursuit of development, and can help prepare for the risks to which we are already committed by past emissions and existing infrastructure.”

But adaptation alone is not enough. Substantial and sustained reductions of greenhouse gas emissions are at the core of limiting the risks of climate change. And since mitigation reduces the rate as well as the magnitude of warming, it also increases the time available for adaptation to a particular level of climate change, potentially by several decades. There are multiple mitigation pathways to achieve the substantial emissions reductions over the next few decades necessary to limit, with a greater than 66% chance, the warming to 2ºC – the goal set by governments.

However, delaying additional mitigation to 2030 will substantially increase the technological, economic, social and institutional challenges associated with limiting the warming over the 21st century to below 2ºC relative to pre-industrial levels, the report finds.

Youba Sokona, Co-Chair of IPCC Working Group III

“It is technically feasible to transition to a low-carbon economy,” said Youba Sokona, Co-Chair of IPCC Working Group III. “But what is lacking are appropriate policies and institutions. The longer we wait to take action, the more it will cost to adapt and mitigate climate change.”

The Synthesis Report finds that mitigation cost estimates vary, but that global economic growth would not be strongly affected. In business-as-usual scenarios, consumption–a proxy for economic growth–grows by 1.6 to 3 percent per year over the 21st century. Ambitious mitigation would reduce this by about 0.06 percentage points.

“Compared to the imminent risk of irreversible climate change impacts, the risks of mitigation are manageable,” said Sokona. These economic estimates of mitigation costs do not account for the benefits of reduced climate change, nor do they account for the numerous co-benefits associated with human health, livelihoods, and development.

R. K. Pachauri, Chair of the IPCC

“The scientific case for prioritizing action on climate change is clearer than ever,” Pachauri said.“ We have little time before the window of opportunity to stay within 2ºC of warming closes. To keep a good chance of staying below 2ºC, and at manageable costs, our emissions should drop by 40 to 70 percent globally between 2010 and 2050, falling to zero or below by 2100. We have that opportunity, and the choice is in our hands.”

Comprehensive assessment

The Synthesis Report, written under the leadership of IPCC Chair R.K. Pachauri, forms the capstone of the IPCC Fifth Assessment Report. The first three volumes, based on outlines approved by the IPCC’s 195 member governments in 2009, were released over the past fourteen months:

  • The Physical Science Basis in September 2013
  • Impacts, Adaptation and Vulnerability, in March 2014
  • Mitigation of Climate Change in April 2014

IPCC reports draw on the many years of work by the scientific community investigating climate change. More than 830 coordinating lead authors, lead authors and review editors from over 80 countries and covering a range of scientific, technical and socio-economic views and expertise, produced the three working group contributions, supported by over 1000 contributing authors and drawing on the insights of over 2,000 expert reviewers in a process of repeated review and revision.

The authors assessed more than 30,000 scientific papers to develop the Fifth Assessment Report. About 60 authors and editors drawn from the IPCC Bureau and from Working Group author teams have been involved in the writing of the Synthesis Report. Their work was made possible by the contributions and dedication of the Synthesis Report Technical Support Unit.

R. K. Pachauri, Chair of the IPCC

“I would like to thank the hundreds of experts from the world’s scientific community who have given freely of their time and expertise to produce the most comprehensive assessment of climate change yet undertaken,” said Pachauri. “I hope this report will serve the needs of the world’s governments and provide the scientific basis to negotiators as they work towards a new global climate agreement.”

For further information about the IPCC, including links to its reports, go to:

Follow IPCC on Facebook on Twitter and on LinkedIn

Natural Gas, Fuel of the Future or Methane Menace?

by John Brian Shannon
Originally published at

While Natural Gas has been touted as the ‘bridge fuel towards a clean energy future‘ three major drawbacks have caused concern in recent months. The first is, of course, the negatives surrounding natural gas fracking which has been well covered by the media and I’m not going to repeat all that has been said on that account.

Rather, I will concentrate of the largely unreported issues of massive methane leaks escaping natural gas well heads, called ‘fugitive emissions’ and the practice of ‘flaring’ at natural gas wells.

Over a 100-year timeframe, methane is about 35 times as potent as a climate change-driving greenhouse gas than carbon dioxide, and over 20 years, it’s 84 times more potent.

Natural gas drilling could emit up to 1,000 times the methane previously thought, possibly significantly increasing the greenhouse gas footprint of the production of natural gas, the study shows. — Climate Central

There’s no doubt that natural gas has the capacity to be a cleaner fuel than coal and the various fuels that can be obtained from crude oil such as gasoline and diesel. But it isn’t.

So, what’s the problem?

The problem is two-fold. Problem number one is methane leakage at natural gas wells, and problem number two is the ongoing practice of natural gas flaring at well heads, distribution centres and gas processing facilities.

Methane emissions from improperly sealed natural gas wellheads, combined with natural gas flaring near well heads, dramatically lowers the advantage of ‘clean’ natural gas as compared to ‘dirty’ coal and crude oil.

Natural gas as a means to produce electricity is being hailed by the Intergovernmental Panel on Climate Change as the fuel that can act as a “bridge” between carbon-heavy coal and zero-carbon renewables, helping to reduce humans’ impact on the climate. 

The idea is that burning natural gas involves fewer greenhouse gas emissions than burning coal. The IPCC in its Working Group III report says natural gas as a bridge fuel will only be effective if few gases escape into the atmosphere during natural gas production and distribution. —

Natural gas has the potential to be 1 million times cleaner than coal or crude oil based fuels if gas industry best practices are employed. But the present situation is so bad that (low carbon) natural gas airborne emissions are almost on par with (high carbon) coal and crude oil airborne emissions — once you factor everything into the equation.

A typical natural gas drilling rig. Credit: EPA

Why not properly seal the well heads?

Cost. Many gas drilling and extraction companies would like to hermetically seal their well heads to lower the death and injury rates of their workers due to raw gas exposure, to enhance overall gas recovery, decrease the waste of an incredibly useful fuel — and to lower emission levels thereby enhancing the reputation of gas as a 21st-century clean energy solution.

The reason companies won’t spend the extra ($100,000 on average) per well head (to fully encase the pipe in concrete slurry) is that shareholders don’t want lowered dividends. Nor do companies want to become less competitive as compared to the ones that don’t seal their well heads. To put this in some kind of perspective within the gas industry, some gas drilling/extraction operators have hundreds of well heads, while others only have tens of well heads.

At the end of it all, it turns out that improperly sealed natural gas wells and natural gas flaring are negating almost all of the benefits of super clean, natural gas — as compared to coal and crude oil sourced fuels.

Feel free to facepalm now.

Why not stop flaring at natural gas well heads?

Every natural gas well head must deal with pressure variables and with the normally-occurring contaminants found in natural gas. This is done onsite in a process known as flaring which is an incredibly toxic way of dealing with the problem of temporary pressure spikes and natural gas contaminants.

Flares burn off excess methane at an oil and gas field. Credit: Pacific Northwest National Laboratory

Contaminants in raw natural gas

Raw natural gas typically consists primarily of methane (CH4), the shortest and lightest hydrocarbon molecule. It also contains varying amounts of:

The raw natural gas must be purified to meet the quality standards specified by the major pipeline transmission and distribution companies. Those quality standards vary from pipeline to pipeline and are usually a function of a pipeline system’s design and the markets that it serves. In general, the standards specify that the natural gas:

  • Be within a specific range of heating value (caloric value). For example, in the United States, it should be about 1035 ± 5% BTU per cubic foot of gas at 1 atmosphere and 60°F (41 MJ ± 5% per cubic metre of gas at 1 atmosphere and 15.6°C).
  • Be delivered at or above a specified hydrocarbon dew point temperature (below which some of the hydrocarbons in the gas might condense at pipeline pressure forming liquid slugs that could damage the pipeline).
  • Dew-point adjustment serves the reduction of the concentration of water and heavy hydrocarbons in natural gas to such an extent that no condensation occurs during the ensuing transport in the pipelines
  • Be free of particulate solids and liquid water to prevent erosion, corrosion or other damage to the pipeline.
  • Be dehydrated of water vapor sufficiently to prevent the formation of methane hydrates within the gas processing plant or subsequently within the sales gas transmission pipeline. A typical water content specification in the U.S. is that gas must contain no more than seven pounds of water per million standard cubic feet (MMSCF) of gas.
  • Contain no more than trace amounts of components such as hydrogen sulfide, carbon dioxide, mercaptans, and nitrogen. The most common specification for hydrogen sulfide content is 0.25 grain H2S per 100 cubic feet of gas, or approximately 4 ppm. Specifications for CO2 typically limit the content to no more than two or three percent.Maintain mercury at less than detectable limits (approximately 0.001 ppb by volume) primarily to avoid damaging equipment in the gas processing plant or the pipeline transmission system from mercury amalgamation and embrittlement of aluminum and other metals — (from Wikipedia)

All of these contaminants are burned off during flaring. The problem is that it is a very incomplete burning cycle, one that is millions of times dirtier than the exhaust that exits your car tailpipe. Indeed historically, there have been many cases where people — or even large numbers of cattle or other livestock — living downwind of flaring stacks have died from breathing the partially burned gas.

Legislation is the obvious solution, but how?

If one state legislates against fugitive emissions from well heads and against the practice of natural gas flaring — all of the gas wells in that state will simply be capped and all gas-related economic and energy activity will cease within that state. That’s how competitive the gas industry is.

In North America for example, if the United States legislates against fugitive emissions and natural gas flaring, the flight of capital and natural gas companies to Canada would result in a huge economic boom for Canada and a dramatic loss for the United States. The reverse is also true.

The Only Solution is a Continental Solution

Therefore, there can only be one solution to the problem — and that is a continental solution to fugitive emissions and to natural gas flaring — whether this is done under the auspices of a Free Trade Agreement or as a standalone convention, it is high-time for such legislation to be passed.

It doesn’t need to be a policy masterpiece nor does it need to be technically perfect. It needs to stipulate one uniform standard that applies to all natural gas drilling/extraction/refining and transportation systems.

Above all else, it needs to be done. Now.

The United Nations Climate Summit 2014 in video

by United Nations

Presented to world leaders at the 2014 United Nations Climate Summit in New York, this short inspirational film shows that climate change is solvable. We have the technology to harness nature sustainably for a clean, prosperous energy future, but only if we act now.

Watch the Video: “What’s Possible”

“Whats Possible” on

“What’s Possible” on YouTube

Narrated by Morgan Freeman

What’s Possible calls on the people of the world to insist leaders get on the path of a livable climate and future for humankind.

What’s Possible was created by director Louie Schwartzberg, writer Scott Z. Burns, Moving Art Studio, and Lyn Davis Lear and the Lear Family Foundation. It features the creative gifts of Freeman and composer Hans Zimmer.

Directed by Louie Schwartzberg Written by Scott Z. Burns Produced by Lyn Davis Lear Narrated by Morgan Freeman Music by Hans Zimmer Editor Craig Thomas Quinlan Additional Editor Alan Wain Post Production Supervisor Courtney Earlywine Assistant Editor Annie Wilkes Line Producer Elease Lui Post Production by Moving Art Visual Effects by 422 South Sound Design by Kent Gibson, Kirk Gaughan Assistant to Director Erin Richardson With footage generously donated by: BlackLight Films, Disneynature, Earth Trust Vision, Extreme Ice Survey, James Balog, Filmthropic, Moving Art, Oceanic Preservation Society, Perkins+Will, Planet Ocean, Courtesy of Hope Production,Momentum for Change, Courtesy of United Nations Other footage provided by: AP Archives, ClipCanvas, Corbis Motion, EarthUncut TV, Footage Search, Getty Images, Pond5, T3 Media Very Special Thanks to: Alan Horn, Dan Thomas, Duane Elgin, Jonathan Klein, RALLY, Scott James, Skoll Foundation, Larry Kopald, Lear Family Foundation, Mark Johnson, Michael Pitiot, Richard Wilson, Yann Arthus-Bertrand

Watch the Sequel: “A World of Solutions”

“A World of Solutions” on

“A World of Solutions” on YouTube

Narrated by Morgan Freeman

Climate News

TakePart has been closely covering climate change ever since our parent company produced An Inconvenient Truth back in 2006.

Learn more about climate change and take action at

Here are the latest videos:

The World Needs U.S. Leadership on Climate Change
The World Needs U.S. Leadership on Climate Change

Meet the New Climate Change Warrior: Your Doctor

Meet the New Climate Change Warrior: Your Doctor

'What's Possible': The U.N. Climate Summit Opening Film

‘What’s Possible’: The U.N. Climate Summit Opening Film

The Carbon Time Bomb Is Set to Go Off in 30 Years—or Less

The Carbon Time Bomb Is Set to Go Off in 30 Years—or Less

The World’s Largest Climate March Aims to ‘Bend the Course of History’ as Leaders Gather in New York

The World’s Largest Climate March Aims to ‘Bend the Course of History’ as Leaders Gather in New York

The U.N. Summit: A Turning Point in the Fight Against Climate Change?

The U.N. Summit: A Turning Point in the Fight Against Climate Change?

Space Lasers Could Help Scientists See the Carbon for the Trees

Space Lasers Could Help Scientists See the Carbon for the Trees

Think Climate Change Is a Problem for the Future? Our Food System May Feel the Heat in a Decade

Think Climate Change Is a Problem for the Future? Our Food System May Feel the Heat in a Decade

Nearly Half the World’s Trash Is Burned, and That’s Worsening Climate Change

Nearly Half the World’s Trash Is Burned, and That’s Worsening Climate Change

Why the World Needs to Shut Down Coal-Fired Power Plants Faster Than Ever

Why the World Needs to Shut Down Coal-Fired Power Plants Faster Than Ever

What is Climate Change? [Video]

What Is Climate Change? [Video] | September 16th, 2014

Remember the difference between weather and climate? We know what happens when the weather changes—it’s obvious. Climate is another story. Read on.

What is climate change? from WHAT IS CLIMATE? (S. Dechert via
What is climate change? from WHAT IS CLIMATE? (S. Dechert via

When it rains, you put on a raincoat or take your umbrella when you go out. It snows: time for high boots, a heavier coat, scarf, and warm gloves. And sunny days, well, they’re the best for being outdoors, unless it’s noon in the tropics. What’s more difficult for us to perceive, from the relatively short perspective of one human lifetime, is that like weather, climate changes too.


What is climate change? On historic maps, we see climate change in the advance and retreat of glaciers, the transitory nature of coastlines, and the periodic appearance and drowning of islands. Species change in response to it. Scientists have learned to measure these climate fluctuations using treetrunk rings, snow lines, fossil records, and cores of ancient ice or seabed. In the past 50 years, we have even devised sophisticated satellite instruments to reveal changes in earth’s land, air, water, and ice, or in the sun and the energy it puts out.

All these measurements have taught us that Earth’s climate changes naturally. Over the past million years there have been a number of cold stages, or “ice ages”— cooler times when much of earth’s water has frozen into ice caps covering the poles and glaciers extending from them toward the tropics.

Earth's geological timeline (,
Earth’s geological timeline (,

During the interglacial periods, which are shorter than the icy ones, earth’s temperature rises and the snow and ice melt, increasing sea levels.

Around the end of the last ice age (the Weichsel, above), the earth transitioned into the benign interglacial climate of the Holocene epoch. At this time, a land bridge called Beringia existed between Siberia and Alaska. It enabled east Asian migrants to become “native Americans.” Through Dutch fishing boats and recent North Sea oil drilling, we have discovered that around the same time, humans could walk from the current nation of Holland all the way to the Irish Sea. Before the English Channel formed, Great Britain was a peninsula linked to the rest of Europe by a low, ecologically rich plain called Doggerland. Over only ten thousand years or so, a temperature rise of 4 degrees C. and accompanying sea level rise of only a few hundred feet eliminated both of these bridges between continents.

  • Scientists have various theories about what makes climate so fickle over the long run. They’ve found any or all of these factors important to some degree to the question of what is climate change.

    Milankovitch cycles, from What Is Climate? (source:
    Milankovitch cycles, from What Is Climate? (source:
  • Small changes in earth’s orbit (Milankovitch cycles) caused by the variable tilt of the planet, its slightly eccentric orbit, and its axial (gyroscopic) precession.
  • Variations in the sun’s energy output, measured as changes in the amount of radiation it emits.
  • Orbital dynamics of earth and moon.
  • Motion of earth’s tectonic plates with seismic activity (drifting continents), which changes the relative locations of landforms and affects wind and ocean currents.

    Earth's tectonic plates (public domain)
    Earth’s tectonic plates (public domain)
  • Impact of meteorites—not small phenomena like the recent ones in Russian, but relatively huge masses like the six-mile (10-km) Chicxulub asteroid that smacked into Mexico’s Yucatan peninsula 66 million years ago. Its impact sent millions of tons of material high into the atmosphere, blacking out the sun for months. It caused the earth’s last great extinction, abruptly and forcefully wiping out all dinosaurs without wings, ending the Cretaceous period of life on the planet, and paving the way for the Cenozoic and the emergence of mammals.
  • Volcanic mega-eruptions, especially from the prehistoric caldera-forming colossi in the American West near Yellowstone, the North Island of New Zealand, subtropical and temperate South America, and potentially from the massive igneous province forming in Iceland. Supervolcanoes like these help determine what is climate change. They send huge amounts of ejecta (ash, gas, and aerosol droplets) into earth’s stratosphere. (Even historic, relatively small eruptions at places like Mauna Loa in Hawaii [33 eruptions in the past 170 years], Indonesia’s Krakatoa [1883], Mount St. Helens, Washington [1980], Mt. Pinatubo in the Philippines [1991], and Iceland’s Eyjafjallajoekull [March 2010] figure into what is climate change because they have disturbed the atmosphere and temporarily cooled the earth.)
  • With meteorites and volcanoes, we can watch earth’s atmosphere in flux, as visible particles crowd the skies. But along with them comes an invisible, and possibly invincible, alteration in the atmosphere—in the gases that comprise it, including its concentrations of carbon dioxide and methane. We can see these influences in the deep Vostok ice core samples from Antarctica that record atmospheric composition over the past 800,000 years.
97% global agreement on anthropogenic climate change (
97% global agreement on anthropogenic climate change (
Humans have survived climate changes, from What Is Climate? (source:
Humans have survived climate changes, from What Is Climate? (source:

On this final accompaniment of climate change—atmospheric variation—today’s research is nearly unanimous (97%). What is climate change? A lot of the phenomenon has to do with the effects of increasing certain atmospheric gases. The temperatures on earth’s surface (land and oceans) are directly related to the chemical composition of our planet’s thin atmospheric shell.

Global warming since 1880 (NOAA)
Global warming since 1880 (NOAA)

Climate shapes and alters natural ecosystems. By doing so, it affects the rise and fall of human civilizations. It governs where and how people, plants, and animals live. It juggles the water, food, and health of its inhabitants. Within the brief time of recorded history (last green bar above), our climate has been relatively stable. It has been generous to human life, allowing exploration, trade, development, labor-saving invention, and even space flight and greater awareness of our universe.

But over the past 200 years, as humans industrialized and populations grew rapidly, the formerly placid natural phenomenon of climate change has been occurring at a much faster rate. We know from meteorological records kept since 1880 that the planet’s temperature has risen about one degree Fahrenheit in the last century. The results of this apparently small change have been impressive. We’ve seen more snow and ice melt, a rise in ocean levels, intensifying storms, and changes in crop seasons and animal reproductive and migration schedules.

Rise in energy consumption since industrial revolution, from What Is Climate Change? (source:
Rise in energy consumption since industrial revolution, from What Is Climate Change? (source:

In fact, over the past couple of decades, scientists have started saying we have switched over from the Holocene to the Anthropocene (human-centered) epoch, and the polar bear on a shrinking ice floe has become a visual cliche. None of the natural causes discussed earlier can fully explain the climate changes we are seeing today. The accelerating temperature results from a massive new influence shaping world climate—the human factor. Our expanding quest for and use of energy has given people the ability to alter the climate. Our own Promethean activities now alter the balance of gases that trap the sun’s heat within the atmosphere, which until now has been earth’s protective greenhouse. Amounts of carbon dioxide, the most common greenhouse gas, are rising sharply to a level unmatched in the past 650,000 years, and other potentially harmful gases like methane are increasing, too. What we commonly call “nature” still makes up much of the force behind climate, but almost all the world’s scientists now say that humans can change climate also. Expanding populations produce and cook food. We drive cars. We heat and cool our houses mechanically. We construct and use factories. All our activities consume energy.

Michael Mann's hockey stick world temperature graph, from What Is Climate? (source:
Michael Mann’s hockey stick world temperature graph, from What Is Climate? (source:

Since the Industrial Revolution, we have obtained energy through the quick fix of mining and burning our limited reserves of coal, oil, and gas. It’s a bit like raiding the kitchen in the middle of the night. Where there’s fire, there’s smoke, though. Look at the “hockey stick” plot of global temperature (right). It shows that instead of continuing the downward trend toward another ice age—which the historical record indicates we should expect—temperatures are rising, and rising very fast.

Burning for energy changes the atmosphere by raising levels of carbon dioxide and other heat-trapping gases. And changing the atmosphere changes everything.

The bottom line is that we no longer know what to expect from our climate. Extinction of many species (including our own) is a possibility. We cannot calculate the amounts of greenhouse gases that will enter the atmosphere, how much and how quickly warmer temperatures will lead to other changes, or even what will be going on in our own backyards by 2050.

Climate changes graphic (
Climate changes graphic (

It’s not just nature that’s running the show any more. The rules have changed. The compositions of our air, land, and seas are in metamorphosis. We find ourselves conducting an unplanned and potentially vast experiment as we segue from the Holocene into the Anthropocene. We can no longer use our wisdom from earth’s past to discern what the future will bring.

This is the first time humans have been capable of causing major climate change on our planet. However: this is also the first time we have had the opportunity to alter its course.


About the Author

covers environmental, health, renewable and conventional energy, and climate change news. She’s worked for groundbreaking environmental consultants and a Fortune 100 health care firm, writes two top-level blogs on, ranked #2 on ONPP’s 2011 Top 50 blogs on Women’s Health, and attributes her modest success to an “indelible habit of poking around to satisfy my own curiosity.”