Vehicle to Grid connection saves money, stabilizes grid

by John Brian Shannon.

Nissan’s LEAF-to-Home programme is a tiny but great example of what a fleet of electric vehicles can do for an electrical grid, and it’s a programme that could theoretically be scaled-up to any size.

Such Vehicle to Grid systems are presently undergoing testing at various facilities around the world, and admirably, Nissan is the main driver of this technology so far.

In a Nissan office tower in Atsugi City, Japan, Nissan has six LEAF electric vehicles connected to the building’s electrical power system via Nissan’s PCS charging system. During the hours of peak electricity demand/peak pricing, the six LEAF batteries provide a substantial amount of power to the building, but are fully recharged and ready for driving by the end of each workday.

So far, Nissan reports no problems and they further report that these six LEAF’s have saved 25.6 KW of electricity (equivalent to $5000/year) at the Atsugi City office building.

Nissan LEAF testing in Atsugi, Japan powers office building during peak electricity demand, saving some 25.6 KW per year -- saving $5000. per year in peak electricity costs.
Nissan LEAF testing in Atsugi City, Japan powers office building during peak electricity demand, saving some $5000. per year in ‘peak electricity rate’ costs. Image courtesy of Nissan.

Time to Scale it Up?

Imagine a large corporation, government department, delivery service, or other fleet that operates (let’s say) 12,000 cars, and each group of six cars saves them $5000. per year on peak electricity charges, as per the Nissan results. We’re talking savings of $10 million dollars per year.

Part of employee remuneration packages

Many organizations provide a ‘company vehicle’ as part of the employee remuneration plan, but why shouldn’t that organization ALSO save $5000. per each six cars on peak electricity charges per year, AND allow their employees to take the cars home at night to help the employee save money on their electricity bill (by plugging the car in and feeding off of the almost fully charged vehicle battery at home) as a further remuneration perk.

Hint to employees; Remember to retain enough battery power in the car to get to work in the morning, and then leave at the end of the workday with a ‘full charge’ courtesy of the company you work for. Yes, every workday of the year.

Not only does this minor perk save the employee from ever paying for ‘fuel’ as all the recharging is done at the office via the employer’s connection, but the corporation receives a very significant benefit when the LEAF is plugged in at the office by lowering annual electricity costs.

Assuming an organization has a ‘company car’ programme, this is the one employee perk that doesn’t cost the company any additional money, it saves the company money. For example, while a gasmobile costs the company $32,000. to purchase, the LEAF with PCS likewise costs the company $32,000. to purchase — but significantly, the LEAF saves the company $833. every year (or more) for the life of the car in electricity costs, and features much lower maintenance costs than a gasmobile. 

Your corporate fleet change-up

If your corporation’s vehicle fleet is comprised of one-thousand cars, you should get a nice promotion for suggesting that your corporation could save $833,000. (per year, every year) on it’s electricity bill, and simultaneously help it to stabilize the office building electricity flows, by switching the fleet to the Nissan LEAF and the Nissan LEAF PCS charging system as it becomes available.

Electric Vehicle batteries store incredible amounts of energy

Not only that, even with most of the fleet on the road during the day, the remaining connected vehicles could easily power the entire complex should a grid power outage occur. Your fellow employees might not realize that a major power failure has occurred unless they hear about it on the news channel.

While your competitors are off looking for flashlights and candles and checking to see if the phones still work, your company will continue to take orders for goods and services, and get the orders that your competitors normally would get, were they not in the dark.

Your boss will love you. Say it with me; “Promotion… plus bonus.” It has such a nice ring to it, doesn’t it?

So, how much are those Nissan LEAF’s anyway?

With incentives and rebates included, the LEAF costs about the same as any comparable car (at least in the U.S. and Canada) especially once you factor in the (Nissan figure of $833. per year/per LEAF) peak demand electricity savings and much lower maintenance costsThe decision to choose the LEAF over a comparable gasmobile is a no-brainer, once the LEAF PCS charging station hits the market. 

*Depending what your local utility company charges during periods of peak demand, your corporation’s annual electricity savings could be less, or significantly more as peak rates rise over the coming years.*

The Microgrid Scenario

Where Vehicle to Grid battery storage might really shine is in the microgrid scenario. For this, we need to think about a remote island or town, located far from major electrical grids. So distant, that it would cost multi-millions, or even billions of dollars to run ‘pylons and powerlines’ to that remote location.

A surprising number of towns and small cities in Australia, China, Russia, and many African countries face this very dilemma. Towns or small cities are often remotely located for good reasons such as local resource extraction projects or agricultural production and would require multi-millions of grid connection dollars and lengthy timeframes for such infrastructure to be built.

Alternatively, on-site diesel generators could be employed (and often are) but come complete with a constant supply of diesel fuel tankers to feed the always-thirsty generators.

Both have been employed over recent decades to meet remote energy demand. In both scenarios the electricity is supplied to the remote location — but the economics don’t work and in both cases, the rest of the customer base ends up subsidizing the whole operation whether they realize it or not.

Where a (solar) microgrid is not connected to a larger grid but some of the cars remain plugged in during the day, much more of the electricity collected all day by the solar panels can be stored — thereby becoming available for later use.

It is typical of most solar panel arrays that they collect vastly more energy than most locations can utilize during the day, which then becomes wasted energy if it can’t be stored. Adding a fleet of usually plugged in electric vehicles to the equation changes that factor significantly. In that case, almost all of the power collected by the solar panels is stored for later use.

Scalability of Vehicle to Grid

Getting back to the ‘scalability’ of the Vehicle to Grid equation; Imagine if half of the cars in a large metropolitan area like Beijing, Tokyo, or Sao Paulo, were EV’s connected to the larger grid when they weren’t being driven. Say goodbye to fossil fuel power generation! Solar arrays and wind farms combined with V-to-G technology could power our cities and add plenty of capacity to our grids.

Oh, and parking meters, remember those? Well, those could be the new charge-up/charge-down stations, so that all cars can connect and contribute to the grid whenever they’re not being driven, yet retain ample charge for driving when their owners return.

Talk about transformative change!

If half of Beijing’s cars were electric vehicles instead of gasmobiles, many thousands of tons of airborne pollutants would no longer block the sunlight all day and be filtered through the lungs of Beijing residents 365 days of the year. And this could be done in many of the world’s major cities, not just Beijing. Clearly though, the air quality in some of China’s cities has significant room for improvement as the Chinese economy continues to thrive.

Just the health care savings alone would become monuments to visionary politicians who enact and promote such positive and ultimately, historic change.

Vehicle to Grid is such a transformative idea, it would be unthinkable to not pursue it. I fully expect the wonderful and accomplished C40 Cities Initiative to adopt V-to-G as a solution to the air pollution problem in many of the world’s cities and I have every hope for V-to-G to become one of the C40’s prime directives.

It might just prove to be what the doctor ordered for the health of residents in cities and towns everywhere.

The Promise of Vehicle to Grid technology

  1. Saving corporations thousands, or millions of dollars per year in peak demand electricity costs 
  2. Adding value to employee remuneration packages 
  3. Adding to grid stability and capacity
  4. Precluding the entry of thousands, or millions of tons of airborne pollution, thereby significantly helping to clear the skies in the world’s largest and most polluted cities 
  5. Lowering national health care costs and improved citizen health

That is the promise of Vehicle to Grid technology.

If you want cleaner air, lower electricity costs, a more stable grid with more capacity and lower health care costs for your region, email your politicians and tell them you want those benefits for your city, courtesy of Vehicle to Grid technology.

Follow John Brian Shannon on Twitter: @EVcentral

China cuts Electric Vehicle subsidy, Tesla stocks soar

by Nicholas Brown

The Tesla Model S electric vehicle – now available in China.

Tesla Model S

China’s generous electric vehicle subsidy was rumoured for months to face huge cuts — but the Finance Ministry has lowered the subsidy by only half of what was originally planned (a 5% drop in 2014, and a 10% drop in 2015).

Electric Vehicle (EV) manufacturers within and outside of the country had been holding their breath ever since the first hints of a possible subsidy cut trickled out into the press.

However, since the latest announcement electric vehicle manufacturers have been celebrating — including Tesla Motors (TSLA) whose stock values have suddenly surged to a record high of $196 per share. Last year, 35,000 to 60,000 yuan ($5,780 to $9,900 USD) per electric vehicle were paid out in subsidies as the frenetic push continues for cleaner air within China’s smog-choked cities.

China has been on a manufacturing roll in recent years. Even companies that are not based in China choose to manufacture their products in the world’s most dynamic economy. Tesla Motors recently entered the Chinese automotive industry despite legal challenges — and Tesla brass expect the Chinese electric vehicle industry to be as large as, or even larger than that of the U.S.

That doesn’t surprise me, as China has the world’s largest population (1.35 billion in 2012, according to Google), and the world’s largest car market.

Apart from that, Tesla’s stock value could come crashing back down as it did in November of 2013. A 40% decrease occurred in a matter of months, possibly caused by reports of (only) three Tesla Model S fires.

However, every cloud has a silver lining — the fires, along with subsequent NHTSA test results, have showed that Tesla vehicles are quite safe. The NHTSA has since rated the vehicle and Tesla was awarded the highest safety rating ever by the NHTSA in 2013.

Information from show the German’s agree with the U.S. National Highways and Transportation Safety Administration (NHTSA).

Responding to potential concerns, the German Federal Motor Transport Authority, Kraftfahrt-Bundesamt (KBA) decided to investigate the matter and check for manufacturing defects. Tesla complied, providing data and additional information related to the three Tesla fires noted above.

KBA conducted its investigation and came to the same conclusion as Tesla, writing:

“According to the documents, no manufacturer-related defects [herstellerseitiger Mangel] could be found. Therefore, no further measures under the German Product Safety Act [Produktsicherheitsgesetz (ProdSG)] are deemed necessary.”

I would also expect the electric vehicle industry to show strong growth as millions more of China’s citizens begin to enjoy disposable income levels on par with other emerging nations. In the China of 2014, hundreds of millions of people need economical cars today and (literally) millions of others are waiting for the opportunity to buy a luxury car. In some cases, due to the long waiting lists the delivery date for a luxury imported car can take longer than one year in China.

According to the Wall Street Journal, even Rolls-Royce sells more cars in China than they do in most countries, at a cost of hundreds of thousands of U.S. dollars per vehicle. China and the U.S. are the most significant markets (as of January 2014) for Rolls-Royce.

Tesla is due to report their fourth quarter results on February 19.

Source: CNN Money

Editor: John Brian Shannon