Solar Power Electricity now Cheaper than Fossil Fuel

Electricity Produced by Solar Power beats Electricity Produced by Fossil Fuel – on per MWh price!

Meeting electrical grid demand via solar power at a lower per MWh cost is now possible, when compared to meeting total demand from conventional electricity producers such as fossil fuel, nuclear or even hydro-electric power.

The WEF report notes that “utility-scale, thin-film solar PV plants produce cheaper power, on average, than new natural gas plants.”

A record low electricity price was achieved in Chile in August 2016. At $29.10 per MWh, solar electricity cost about half the price offered by a local coal competitor.

The cost of production of electricity through the utilization of solar energy is outpacing other alternatives, as the investment in solar panels is turning out to be comparatively cheaper than a comparable investment in coal, natural gas or other options, according to a new World Economic Forum report… Continue reading Solar Power Electricity now Cheaper than Fossil Fuel

Renewable Energy & Natural Gas powered Electricity Grids

Originally published at JBS News by John Brian Shannon John Brian Shannon

Clean and Clean-Burn: Energy, the way it should be

Planetary energy graphic courtesy of Perez and Perez.
Planetary energy graphic courtesy of Perez and Perez.

Of all the energy that is available to us, solar energy is by far the most available and the most evenly distributed energy resource on planet Earth.

Wind and Solar + natural gas = Synergy

  • Solar is available all day every day. But not at night.
  • Wind is available day and night, but it can produce variable power levels as the wind blows over the landscape.
  • Meanwhile, offshore wind turbines produce constant power, spinning at constant speeds for years at a time — except when an operator locks the blades during large storms or during the annual maintenance inspection.

Both solar power and wind power face varying levels of ‘intermittency‘ — which requires the use of ‘peaking power plants‘ or ‘load-following’ power plants — to meet total demand.

‘Catch my Fall’ — All electrical power generators are inter-dependent

How electricity grids use different power generators to meet total and constantly changing electricity demand.

In the case of renewable energy, the negatives include some variability in the total output of solar power or wind power generation due to temporary cloud cover or storms. At such times, natural gas-fired generation can ramp-up to cover any shortfall.

Note: This is a common and daily energy grid practice whether renewable energy is involved or not. Some gas-fired power plants are called peaking power plants which quickly ramp-up to meet output shortfalls. In fact, peaking power plants (which are almost always gas-fired) were created to meet temporary shortfalls — and were in widespread use long before renewable energy ever hit the market.

Also in the case of renewable energy, another negative is that the Sun disappears at night and solar panels stop contributing to the grid. And unless you have offshore wind turbines to make up the shortfall, onshore wind turbines may fall short of total demand. So at night, you need reliable power to make up shortfalls in primary generation.

Note: This is a common and daily energy grid practice whether renewable energy is involved or not. To cover this situation load-following power plants were designed to meet larger output shortfalls. In fact, load-following power plants were created to meet larger, daily, shortfalls — and were in widespread use long before renewable energy ever hit the market.

In the case of natural gas, the negative is that gas is subject to wild price swings, thereby making gas-fired generation very expensive. Which is why it evolved into peaking power plants, less often in the load-following role and almost never as a baseload power generator.

The other negative associated with natural gas is of course, the fact that gas turbines put out plenty of CO2. That we can deal with. Unlike coal, where the CO2 portion of the airborne emissions are almost the least of our worries — as coal emissions are loaded with toxic heavy metals, soot and other airborne toxins.

How can we deal with the CO2 emitted by gas-fired peaking power plants?

As gas-fired peaking power plants typically fire up anywhere from a couple of dozen hours annually, to a few hours of every day (usually to cover the additional load of many air conditioners suddenly switching on during hot summer days, for example) we aren’t talking about a whole lot of CO2.

Carbon Capture and Sequestration (CCS) of gas-fired CO2 emissions via tree planting

  • Peaking power plants operate for a few hours per year. We’re not talking that much CO2.
  • Load-following power plants operate for many hours per year. More CO2.

But still, each mature tree absorbs (a low average of) 1 ton of CO2 from the atmosphere and keeps it in storage for many decades. Some trees, like the ancient Sequoia trees in California, are 3700 years old and store 26 tons of CO2 each!

And, as anyone who has worked in the forest industry knows; Once that first planting hits maturity (in about 10 years) they will begin dropping their yearly seeds. Some trees like the cottonwood tree produce 1 million seeds annually for the life of the tree. American Elm trees set 5 million seeds per year. More trees. Always good.

It’s an easy calculation: “How many tons of CO2 did ABC gas-fired power plant output last year?”
Therefore: “How many trees do we need to plant, to cover those emissions?”

Simply plant a corresponding number of trees and presto! gas-fired generation is carbon neutral

By calculating how many tons each gas-fired peaking plant contributes and planting enough trees each year to cover their CO2 contribution, it could allow them to become just as carbon neutral as solar panels or wind turbines.

The total number of trees that we would need to plant in order to draw gas-fired peaking power plant CO2 emissions down to zero would be a relatively small number — per local power plant.

By calculating how many tons each gas-fired load-following power plant contributes and planting enough trees annually to cover their CO2 contribution they too could become just as carbon neutral as solar panels or wind turbines. Many more trees, but still doable and a simple solution!

The total number of trees that we would need to plant in order to draw gas-fired load-following power plant CO2 emissions down to zero would be a much larger number. But NOT an impossible number!

So now is the time to get kids involved as part of their scholastic environmental studies, planting trees one day per month for the entire school year.

Let the peaking and load-following power plants contribute the tree seedlings as part of their media message that the local gas-fired power plant is completely carbon neutral (ta-da!) due to the combined forces of the gas power plant operator, the natural carbon storage attributes of trees, and students.

Up to one million trees could be planted annually if every school (all grades) in North America contributed to the effort — thereby sequestering an amount of CO2 equal to, or greater than, all gas-fired generation on the continent.

It’s so simple when you want something to work. Hallelujah!

Baseload, peaking, and load-following power plants

Historically, natural gas was too expensive to used in baseload power plants due to the wildly fluctuating natural gas pricing and high distribution costs, but it is in wide use around the world in the peaking power plant role, and less often, in the load following power plant role.

Renewable energy power plants can be linked to ‘peaking’ or ‘load-following’ natural gas-fired power plants to assure uninterrupted power flows.

Peaking power plants operate only during times of peak demand.

In countries with widespread air conditioning, demand peaks around the middle of the afternoon, so a typical peaking power plant may start up a couple of hours before this point and shut down a couple of hours after.

However, the duration of operation for peaking plants varies from a good portion of every day to a couple dozen hours per year.

Peaking power plants include hydroelectric and gas turbine power plants. Many gas turbine power plants can be fueled with natural gas or diesel. — Wikipedia

Using natural gas for baseload power

Natural gas has some strong points in its favour. Often it is the case that we can tap into existing underground gas reservoirs by simply drilling a pipe into naturally occurring caverns in the Earth which have filled with natural gas over many millions of years. In such cases, all that is required is some minor processing to remove impurities and adding some moisture and CO2 to enable safe transport (whether by pipeline, railway, or truck) to gas-fired power plants which may be located hundreds of miles away.

It is the natural gas market pricing system that prevents gas from becoming anything other than a stopgap energy generator (read: peaking or load-following) and almost never a baseload energy generator.

Let’s look at local solutions to that problem.

Waste-to-Fuels

Several corporations are working with local governments to find innovative ways to capture landfill gas to produce electricity from it.

Increasingly, landfills are now installing perforated pipes underground which draw the landfill gas (so-called ‘swamp methane’) to an on-site processing facility. It is a low-grade gas which is then blended with conventional natural gas to create an effective transportation or power generation fuel.

Waste Management Industries is a global leader in the implementation of this technology, using its own landfills and municipal landfills across North America to produce over 550 megawatts of electricity, enough to power more than 440,000 homes. This amount of energy is equivalent to offsetting over 2.2 million tons of coal per year. Many more similar operations are under construction as you read this.

Aquatera gives us another great example of how to turn a mundane landfill site into a valuable and clean Waste-to-Fuel resource.

Durban, South Africa, a city of 3.5 million people, has created a huge Waste-to-Fuel landfill power plant that provides electricity to more than 5000 nearby homes.

Durban Solid Waste (DSW) receives 4000 tons of trash per day which produces some 2600 cubic metres of gas daily.

The GE Clean Cycle Waste-to-Fuel power plant arrives in 4 large shipping containers, and once connected to the gas supply pipeline it is ready to power nearby buildings and to sell surplus power to the grid.

One GE Clean Cycle Waste-to-Fuel power plant unit can generate 1 million kWh per year from waste heat and avoid more than 350 metric tons of CO2 per year, equivalent to the emissions of almost 200 cars.

Blending Conventional Natural Gas with Landfill Gas

As conventional natural gas is expensive (and much of the cost is associated with transportation of the gas over long distances) when we blend it 50/50 with landfill gas, we drop the cost of the gas by half. Thereby making blended natural gas (from two very different sources) more competitive as a power generation fuel.

By blending conventional natural gas 50/50 with landfill gas; We could produce baseload power with it — but more likely than that, we could use it to produce reasonably-priced load-following or peaking power to augment existing and future renewable energy power plants — rather than allow all that raw methane from landfills to escape into the atmosphere.

Best of Both Worlds — Renewable Energy and Natural Gas

Partnering renewable energy with natural gas in this way allows each type of power generator to work to their best strength — while countering negatives associated with either renewable energy or natural gas.

Renewable power generation and lower cost natural gas can work together to make coal-fired electrical power generation obsolete and accelerate progress toward our clean air goals.

Related Articles:

new lens scenario
Royal Dutch Shell ‘New Lens Scenarios’
Our latest scenarios explore two possible versions of the future seen through fresh ‘lenses’ to take us to the year 2100.

BP Energy Outlook 2035
BP Energy Outlook 2035
This edition updates our view of the likely path of global energy markets to 2035.

Ubitricity streetlamp plug-in charges German EV’s

by John Brian Shannon
Originally published at JohnBrianShannon.com

One major impediment to the adoption of electric vehicles is the high cost of public charging stations for EV’s, as the charging units are very expensive.

Ubitricity.de has come up with a novel solution whereby ordinary streetlamps could be fitted with an electric vehicle charging point for the reasonable cost of 500 to 800 euros per streetlight, which is certainly more doable than the 10,000 euros of your typical EV public charging station in Europe.

Ubitricity.de - Reuters screenshot
Ubitricity.de – Reuters screenshot

>> Click here to see the Reuters Ubitricity video. <<

Streetlamps in selected cities within Germany are now being fitted with a charging point allowing electric vehicle drivers to recharge their car battery.

Drivers prepay the cost of the electricity via Ubitricity to charge at these locations. Ostensibly, every streetlamp post and parking meter in Europe could be fitted with one of these charging points.

Not only do German drivers have the option of charging their EV’s at home, now they can now pick up a charge while they shop, have coffee with friends, or while they spend the day at their workplace.

“We are convinced there is room for this technology to be applied everywhere it’s needed, but we think that in most places there is a pressing need for investment in a charging infrastructure to allow the installation of charging points, not only here on lamp posts, but also in the workplace, at home and in underground carparks.

Governments are keen to cut the number of gas guzzling cars on the roads to reduce greenhouse gas emissions. Many are offering cash incentives to drivers to buy electric. But take-up has been slow partly due to the lack of charging stations.

There are lots of lamp posts which are already very well connected to the electricity network. Equipping a lamp post costs between 300 and 500 euros, depending on the circumstances at that location. When you consider the production price of our charging sockets, it is a long way from the 10,000 euros which must typically be invested in a charging station.” Founder of Ubitricity, Frank Pawlitsche

All you need is an Electric Vehicle, your prepaid Ubitricity account and Ubitricity connector cable, and you’re set

Ubitricity portable, streetlight-attachable EV charging unit
Ubitricity portable, streetlight-attachable EV charging unit

The great thing about the Ubitricity parking spots with their electric vehicle recharging connector is that they’re normal parking spots with a charging port added. Your mobile phone app displays the Ubitricity locations.

You can park there all day and return to a car that is fully energized and ready to go! No more petrol stations for you.

It’s a wonderful idea. Streetlamps and parking meters are everywhere it seems and combining a parking spot with an EV charging port is a stroke of genius.

Boy those Germans are smart. Gut gemacht! (Well done!)

Driving electric is a cornerstone of Germany’s Energiewende energy policy

Only when driving on renewables will EV users avoid greenhouse gas emissions — not just locally but on a global scale. Renewable energies and EVs are natural partners of a sustainable energy and transportation sector. — From the Ubitricity website

Not only Ubitricity — but also BMW is getting into the act

BMW i3
BMW i3 receiving a charge at a Ubitricity charge point. Image courtesy of ubitricity.de

Drivers of the much-loved BMW i3 electric vehicle will soon have their own BMW charging network and software to guide you to nearby charge points.

Eventually, BMW will build their network across Europe to facilitate EV travel across the continent.

BMW has a vision to offer buyers their choice of petrol powered, or as an option, electric powered, or hybrid/electric powered cars across all model lines.

BMW is also famous for installing wind turbines, solar panels, and biomass power plants at it’s German factories, and going completely off-grid!

It also has plans to get into the consumer electricity business throughout Europe.

You’ll soon be able to buy a BMW car and a BMW motorcycle for your driveway and BMW electricity for your home and office. All produced by renewable energy and only renewable energy.

A note about TESLA Model S drivers and their unique charging situation/opportunities

TESLA Model S at a SuperCharger location.
A TESLA Model S receiving a charge at a typical TESLA SuperCharger location. Image courtesy of edmonds.com

All TESLA vehicles can access the Ubitricity chargers but don’t forget to bring your Ubitricity charging cable — unlike the TESLA SuperCharger stations where the cable is permanently attached to the SuperCharger unit.

A benefit of TESLA SuperCharger top-ups is that they usually take 10-15 minutes. Look, there’s a Starbucks!

Another benefit is that (TESLA Model S drivers only) enjoy free charging at TESLA SuperCharger stations for the life of the car because that’s what you get for 70,000 euros.

But once your TESLA is charged, you must return to move your car in order to let other TESLA drivers access the SuperCharger, much like gas-engined drivers can’t leave their car in front of the gas pump while they go shopping.

Only the Ubitricity solution gives all EV drivers a convenient parking spot — and a charge. The ability to simply ‘Park and Plug’ at one location in today’s crowded cities is a very big plus indeed.

Related Articles:

The Solar / Water nexus

by John Brian Shannon John Brian Shannon

Separate from discussions about airborne coal power plant emissions,  are the high levels of water usage — proportional to the downstream water loss experienced by farmers, citizens, and other water users such as wildlife — caused by obscenely high coal power plant water requirements.

Water used by power plants
At a time of increasing water scarcity, water use by power plants varies widely. In some regions, that different water usage level is becoming an important part of the decision-making process for planners. climaterealityproject.org

In some regions of the world, there exists acute competition for water resources as coal power station operators vie for water with agricultural, urban, and other users of water, while areas with plentiful water find their power plant choices aren’t constrained by water supply issues at all.

The era of increasing water shortages and frequent drought seem here to stay, and the huge volumes of water required by some power plants is becoming a factor in the decision-making process as to which type of power plant is most suited for any given location.

Therefore, the conversation is now arcing towards the local availability of water and thence, to the most appropriate type of power station to propose for each location.

So let’s take a look at the water usage of five common types of power plants:

  • Coal: 1100 gallons per MWh
  • Nuclear: 800 gallons per MWh
  • Natural gas: 300 gallons per MWh
  • Solar: 0 gallons per MWh
  • Wind: 0 gallons per MWh.

While 1100 gallons per MWh doesn’t sound like much, America’s 680 coal-fired power plants use plenty of water especially when tallied on an annual basis.

The largest American coal-fired power station is in the state of Texas and it produces 1.6 GW of electricity, yet it is located in one of the driest regions on the North American continent. Go figure.

At one time as much as 55% of America’s electricity was produced via coal-fired generation and almost every home had a coal chute where the deliveryman dropped bags of coal directly into the homeowner’s basement every week or two.

But in the world of 2014, the United States sources 39% of its electricity from coal power plants and this percentage continues to decline even as domestic electricity demand is rising.

Texas Utility Going Coal-Free, Stepping Up Solar

In a recent column by Rosana Francescato, she writes;

“El Paso Electric Company doubles its utility-scale solar portfolio with large projects in Texas and New Mexico. As if that weren’t enough, the utility also plans to be coal-free by 2016.” — Rosana Franceescato

She goes on to tell us that EPE serves 400,000 customers in Texas and New Mexico and gives credit to the foresighted management team. El Paso Electric is already on-track to meet the proposed EPA carbon standard. Their nearby 50 MW Macho Springs solar power plant about to come online is on record as having the cheapest (PPA) electricity rate in the United States.

This solar power plant will displace 40,000 metric tonnes of CO2 while it powers 18,000 homes and save 340,000 metric tonnes of water annually, compared with a coal power plant of the same capacity. That’s quite a water savings in a region that has been drought-stricken in 13 of the last 20 years, only receiving 1 inch of rainfall per year.

In February 2014, EPE signed an agreement for the purchase all of the electricity produced by a nearby 10 MW solar installation that will 3800 homes when construction is completed by the end of 2014. And they are selling their 7% interest in a nearby coal power plant.   Now there’s a responsible utility company that makes it look easy!

Solar’s H2O advantage

The manufacture of solar panels uses very little water, although maintenance of solar panels in the field may require small amounts of water that is often recycled for reuse after filtering out the dust and grit, while other types of energy may require huge volumes of water every day of the year.

Wind’s H2O advantage

Wind turbines and their towers also use very little water in their construction and installation, although some amount of water is required for mixing with the concrete base that the tower is mounted on at installation.

In the U.S. which is facing increasing water shortages and evermore drought conditions as global warming truly begins to take hold in North America, switching to a renewable energy grid would have profound ramifications. Estimates of water savings of up to 1 trillion gallons could be possible if utilities switched to 100% renewable wind and solar power with battery backup on tap for night-time loads and during low wind conditions.

Midway through that transition, the present water crisis in the U.S. would effectively be over. Yep, just like that. Over.

China’s Looming Water Crisis

China’s looming water crisis has planners moving to taper their coal and nuclear power generation construction programmes. You can’t operate these plants without the required water, even for a day. Yet, the people who live and grow crops and raise livestock in the surrounding areas need access to undiminished water supplies. What good is a coal power plant if everyone moves away due to a lack of water?

There are very legitimate reasons nowadays to switch to solar and wind generation — and the reduction of airborne emissions used to be the prime consideration and may remain so for some time, however, massive reductions in water consumption might now prove to be the dealmaker in some regions — and the emission reductions may now be viewed as the happy side benefit! Wow, that’s a switch!

Of course, the benefits of solar and wind power will still include no ongoing fuel costs, very low maintenance and the lowest Merit Order ranking (the wholesale kWh price of electricity) of any energy.

Granted, there are locations where renewable energy doesn’t make sense, such as some Arctic or Antarctic regions. In these places solar simply isn’t worthwhile and wind levels may not be sufficient to make the economic case. Biomass may be a partial solution in these areas and there may be the opportunity for geothermal energy — although finding ‘hot rocks’ underground near population centres is much more unlikely than many people may realize.

But in the future, the vast majority of locations will be powered by renewable energy paired with a battery backup or a conventional grid connection — or both. And its a future that’s getting closer every day.

Sustainable Energy Policy to save EU €81 bn/year by 2030

by John Brian Shannon John Brian Shannon

Accenture says a sustainable pan-European energy policy could save consumers €27 to €81 billion per year by 2030 and result in a cleaner utility grid model.
Accenture says a sustainable energy policy could save European electricity consumers €27 to €81 billion per year by 2030.

A recent report authoured by Accenture for EURELECTRIC says that if European nations work together towards an integrated and pan-European energy policy it could generate savings for electricity consumers between €27 to €81 billion per year by 2030 and the result would be a cleaner utility grid model.

Accenture is calling on European governments to phase-out renewable energy targets and renewable energy programme spending — replacing both with a carbon trading scheme, one that essentially rewards low carbon energy producers and penalizes high carbon energy producers.

All of this is happening during a time of unprecedented change within the European energy industry.

In the fascinating German example, that country shut down much of its nuclear power generation rather than spend multi-billions to upgrade its aging and oft-troubled nuclear fleet. Consequently, Germany is now burning record amounts of coal and natural gas to replace that lost generation capacity — in addition to the installation of record amounts of wind, solar and biomass capacities to the German grid.

In the decades following WWII, German utility companies operated in a cozy, sheltered environment. But few knew how expensive it was to operate and maintain on account of massive government subsidies and preferential treatment of the utility industry. German consumers never had it so good and likewise for sleepy German energy giants, which have now awoken to find that the energy picture has changed dramatically in little over a decade.

Hence, even more subsidies were employed to counter for the loss of German nuclear power via Feed-in-Tariffs (FiT) for wind, solar and biomass capacity additions to the grid, partially financed by a hefty nuclear decommissioning fee added to every German electricity bill.

At least in Germany, it turns out that while nuclear has practically disappeared, and with no fuel costs to worry about, renewable energy combined to lower German electricity rates during the hours of the day that wind and solar are active, causing downward pressure on electricity rates. At the same time, German utilities burned record amounts of brown coal and expensive Russian natural gas to meet total demand which caused upward spikes in the electricity rate during the hours of the day that coal and natural gas were required to meet total demand.

In simple terms, the removal of nuclear from the German energy mix has resulted in higher electricity rates — not because some of that capacity was replaced by renewable energy — but because significant fossil fuel burning was required to meet demand, combined with nuclear decommissioning costs.

Were German politicians and their voters wrong to shut down the country’s nuclear power plants? Not a bit. Germany’s nuclear power plants were problem-plagued and the costs to bring all 19 reactors up to modern standards were prohibitive. Shutting down the German nuclear fleet was unfortunate perhaps, but necessary.

German consumers continue to yearn for clean energy and low energy costs. Unsurprisingly, the German public has reacted to energy that seems to be getting dirtier and more expensive by the day, and the massive nuclear decommissioning costs which will continue long past 2022, perhaps until 2045.

After the loss of nuclear, the German energy grid initially became cleaner with the addition of wind and solar, but then became dirtier than ever as record amounts of brown coal and natural gas were burned! Es ist zum weinen.

And that’s just the story in Germany. Every European partner country has its own story to tell in an electricity market that is undergoing unprecedented and rapid change — and each country’s electricity market is as different from each other as they are from the German example. Although each story is different, the net result is the same; The energy industry across Europe must adapt to the loss of (some) nuclear and the growing consumer disenchantment with fossil fuels, and to the huge consumer driven additions of renewable energy to the grid. And it must be done in a cost-effective way or utility companies and their respective governments will face consumer backlash.

Utility companies shocked by the unprecedented and rapid changes thrust upon them by nuclear shutdowns and the multiple demands of consumers are hoping that a harmonized set of rules across Europe will allow them to meet rising electricity demand.

If you look at what utilities really want, it is one harmonized set of rules across Europe. Europe is one market; it’s one playing field, and utilities really benefit from a harmonized set of rules.

It is like playing football; if you play football,you don’t want different rules for different parts of the field. — Sander van Ginkel, Managing Director, Accenture Utilities

“European electricity prices are rising fast. As a result, the overall increase in energy expenditure is putting mounting pressure on residential end-users and undermining the competitiveness of European industry. The implementation of the energy transition has so far lacked optimization on a pan-European scale. Without a concerted effort to more effectively manage the costs of the energy transition, expenditure on electricity and gas in 2030 could be 50 percent higher than it is today.

A step-change in the reshaping of the European energy system is needed — by reconfirming the European power sector’s support for Europe’s sustainability agenda through an optimized approach that avoids unnecessary costs. Doing so would put significant benefits within reach: our analysis shows that implementing an integrated set of levers could generate net savings of €27 to €81 billion per year by 2030. Such savings could be achieved by further integrating energy markets and the supporting regulatory framework at a European level and by leveraging flexibility throughout the electricity value chain — provided utilities, governments, regulators and consumers can forge a joint commitment to work together.” — Quoted from the Accenture/EURELECTRIC report

Accenture’s report says that Europe’s utilities must meet customer demands for more energy, but make it cheaper and cleaner and that the existing grid model will fail unless changes are made. Accenture has suggested four main ways to achieve these goals.

  1. Optimizing renewable energy systems
  2. Market integration
  3. Active system management
  4. Demand response and energy saving

“The restructuring of the European electricity system will have to be carried out cost-effectively if we are to gain the support and trust of energy consumers. This study shows that, with the right policies in place, the energy transition could cost each European citizen over € 100 less a year than if we continue with business as usual.” Hans ten BERGE Secretary General. Union of the Electricity Industry – EURELECTRIC

It seems reasonable that all of Europe’s utility companies acting together could arrive at a better solution. Complementary and overlapping energy capabilities may prove to be the model that works for Europe, as opposed to the direct competition model favoured in the U.S.

A carbon tax which reflects the true societal costs of fossil fuels could be a just solution to Europe’s present grid malaise. However, it is doubtful that a carbon tax will ever reflect the true cost to society of fossil fuels — which have been estimated to cost €30 per tonne of CO2 — but a carbon mechanism may well provide the impetus to foster a new and better European energy paradigm.

No matter the how the equation looks, it is sometimes only the answer that matters. A cleaner energy mix and reasonable electricity rates within a stable electricity grid is something that all sides can cheer for. How very European!

See the Accenture video (click here)