European Union to cut energy use 30% by 2030

The Big Power Plan: European Union to cut energy use by 30%

The European Commission has unveiled its big power plan, aiming to slash energy use in the bloc 30 percent by 2030.

“Europe is on the brink of a clean energy revolution. And just as we did in Paris, we can only get this right if we work together. With these proposals, we have cleared the way for more competitive, cleaner energy in Europe.” — European Commission

Cutting waste, better integrating renewable energy and phasing out subsidies for coal-fired electricity generation are all part of the vision. But wind and solar energy producers will no longer have priority for selling to the… Continue reading European Union to cut energy use 30% by 2030

Sustainable housing as a solution to climate change

Sustainable housing projects must consider their environmental footprint to minimize disruption to the ecosystem and help combat climate change. Image courtesy of www dot oxford-architects dot com
Sustainable housing projects must consider their environmental footprint to minimize disruption to the ecosystem and to help combat climate change in their quest to provide more livable spaces. Image courtesy of www.oxford-architects.com

As long as a house-or the whole community, for that matter-is designed in such a way that it minimizes the negative human impacts on its natural surroundings, the processes that prevail in nature, materials and resources, that a house or community may be regarded as sustainable. Subdivision and Housing and Developers Association (SHDA) national president Armenia… Continue reading Sustainable housing as a solution to climate change

Harvard Business School to Host Program on Corporate Social Responsibility

From October 18-21, 2015, Harvard Business School (HBS) Executive Education will host Corporate Social Responsibility (CSR) on the HBS campus in Boston. This program is designed to help executives refocus corporate social responsibility and sustainability efforts in ways that benefit society and the business. Continue reading Harvard Business School to Host Program on Corporate Social Responsibility

Don’t Miss: Responsible Business Summit Asia 2015

The Responsible Business Summit Asia 2015

Ethical Corporation’s Responsible Business Summit Asia is the regional prominent meeting place to find out where business leaders and innovators are headed around their sustainability and CSR strategy. #RBSA2015 brings together corporate practitioners from Fortune 500 brands working in corporate sustainability, environment, supply chain and communications.

“Events like RBS Asia bring together not just the NGOs and policy makers, but also businesses like ours to share experiences and best practices to accelerate solutions for a more sustainable future for all of us. As a business in the pursuit of sustainability for nearly half our lifetime, we see this as an exciting opportunity for greater collaboration and partnership to drive sustainable growth and a shared economy” — Interface Inc, President & Chief Executive Officer, Asia Pacific, Rob Coombs Continue reading Don’t Miss: Responsible Business Summit Asia 2015

Where does our energy go? Follow the money!

by John Brian Shannon.

Some 16 Terawatts of energy of all kinds, were produced and consumed in 2009 by our civilization, and experts tell us that we will demand 28 Terawatts per year by 2050. An example of energy demand is the electricity that flows into our homes and businesses. Another example is the fuel we use in our vehicles. Still another is what powers our global industrial sector.

Of the energy produced and consumed by our 21st century civilization, approximately one-third is used for transportation.

The cars we drive, the transport trucks and trains that haul our freight, and the airlines and shipping lines that transport us and our goods around the world, are all part of what we call the transportation sector. The vast majority of these vehicles use petroleum fuels to provide the motive power. Fuels such as gasoline, diesel, aviation fuel/kerosene, bunker fuel and other fuels, produce plenty of CO2, toxic emissions, particulate matter, and soot.

Of the three categories of energy users, the transportation sector is easily the ‘dirtiest-third’ and contributes the largest share of atmospheric emissions.

Another third (approx.) of total demand is consumed by industry and like the transportation sector, contributes large amounts of pollution to our atmosphere. Depending where you live in the world, the environmental effects of that pollution can range from negligible to toxic.

The last third (approx.) of demand is used to power residential buildings, commercial buildings, and various levels of government infrastructure. When you turn on the lights or heat in a building, or look at illuminated signs and streetlights on your way to your local air-conditioned shopping mall — each is an example of residential, commercial, and government energy users.

A question arises; Which of the three categories can lower their emissions at reasonable cost?

In all three categories, not using the energy in the first place is the best way to lower costs and emissions. Energy conservation beats everything else, hands down, every time.

For example, no matter how cleanly your car operates for each mile you drive it — for each mile that you don’t drive it, the car produces zero emissions. The same holds true for cities that shut off every second streetlight after midnight. No matter how efficient streetlights are these days, they still use less power turned OFF — when compared to ON.

Energy conservation differs from efficient energy use, which refers to using less energy for a constant service. For example, driving less is an example of energy conservation. Driving the same amount with a higher mileage (MPG) vehicle is an example of energy efficiency. Energy conservation and efficiency are both energy reduction techniques.

Energy conservation reduces energy services, it can result in increased, environmental quality, national security, and personal financial security. It is at the top of the sustainable energy hierarchy. — Wikipedia

For decades, very little research went into increasing efficiency or adding conservation measures in residential and commercial buildings.

Until the 1980’s, electricity wastage for commercial buildings and residential buildings was often over 80% and little attention was paid to building efficiency or conservation — back in the days of cheap electrical power — but great progress is now being made in efficient buildings and conservation as a way for building owners to reduce operating costs.

One of the most cost-effective ways to reduce overhead and to help lower emissions in buildings, is to employ efficiency and conservation measures, and to source electricity from clean, renewable energy for our residential/commercial buildings and government infrastructure. Efficiency and conservation can save building owners millions of dollars per year with rapid return on investment (ROI).

Example of a green building in Washington DC. Image via Progressive Times
A ‘green building’ in Washington DC. This office building is a LEED Certified building that uses efficiency and conservation to dramatically minimize its environmental footprint and reduce costs. Image via Progressive Times

Some buildings are notorious for their heavy electrical demand. For example, some large U.S. shopping malls have utility bills of $1 million dollars per month. Retrofitting such commercial buildings in order to save up to 80% on their monthly electricity bill has become a huge business in the United States and there is every possibility of this happening globally, as electricity costs are expected to rise (and in some regions, rise steeply) in the years ahead.

Get used to hearing the terms efficient buildings, conservation, and LEED Certification, as these represent a global multi-trillion dollar opportunity for retrofit companies, building systems equipment manufacturers and engineering firms. At the same time, opportunities for building owners to lower their electricity, water and sewage expenses by orders of magnitude — with swift payback on efficiency and conservation spending — via large reductions in operating expenses.

Some building owners may opt for a light efficiency and conservation retrofit, while others choose the so-called Deep Energy Retrofit which is applicable to commercial buildings and forecasts savings of greater than 50% will result from such efficiency and conservation upgrades.

Commercial Building RetroFit Initiative (USA)

Who would have thought retrofitting the 6,514 operable windows of the Empire State building on the 5th floor, for energy efficiency, would be time- or cost-effective?

But it was.

Retrofitting existing commercial buildings for energy efficiency is one of the greatest opportunities facing the building industry. If our existing buildings in the U.S. were a nation, its energy consumption would rank third after China and the U.S. More than a trillion dollars is currently flowing out of our buildings in the form of wasted energy.

Eighty percent of the today’s commercial square footage will be standing and operating in 2030. We estimate a conservative $1.4 trillion dollar value to be gained over the next 40 years from intervening with deep energy retrofits using whole systems design. — Rocky Mountain Institute

One stellar example of a government leading the way for consumers, for commercial building operators, and for industry, is Washington DC. Under the leadership of Mayor Vincent C. Gray, the city set a great example for other cities. Washington DC is a thought and action leader on green buildings, efficiency and conservation, renewables, and sustainable development.

The Living Building Challenge is part of numerous efforts by the city to reach Mayor Gray’s “Sustainable DC” initiative, which includes 11 key categories for environmental/fiscal improvement. The categories include goals such as cutting the energy consumption of the entire city by half, being able to bring in locally grown food within a quarter mile of the city and have it consumed by 75 percent of D.C. residents, as well as tripling the number of small businesses within the city. — Carl Pierre, InTheCapital.com excerpted from D.C. is Planning its First Self-Sustaining, ‘Living Building’

As more than 50% of the world’s citizens presently live in cities (70% by 2050, according to the WHO) it makes sense to ramp-up efforts on efficiency and conservation in cities — where much of the transportation sector operates, where there is an active industrial sector, and where there are large numbers of commercial/residential buildings and government infrastructures.

Washington DC, San Francisco, New York, and other cities are leading the world with their great examples.

What can you do to help add efficiency and conserve power in your home, commercial building, or industry?

<>

Here are some helpful efficiency and conservation information links, courtesy of the U.S. National Renewable Energy Laboratory (NREL).

Fred Hutchinson Cancer Research Center, Seattle, Washington State.

The Fred Hutchinson Cancer Research Center
Fred Hutchinson Cancer Research Center in Seattle, Washington state, is an excellent example of efficiency and conservation measures at work to save money for the building owner/operators. Photo credit: J. Housel

Fred Hutchinson Cancer Research Center (FHCRC) comprises a campus with several buildings with 532,602 square feet of floor space in Seattle, Washington. The facility was built from 1990 to 2004 and has won numerous awards for energy efficiency because of its original design but also because of its ongoing efficiency programs. For example, FHCRC staffs recommission all air-handlers, controls, and electrical equipment every two years in partnership with the controls system provider, Siemens Building Technology.

Campus maintenance is managed full time by a team of three professionals. In 2000, for example, this team performed more than 1,500 preventative maintenance operations. The performance of campus buildings is the subject of a Labs-21 case study titled Fred Hutchinson Cancer Research Center, Seattle, WashingtonPDF.

Other examples of campuses with good maintenance and energy management programs include the following.

Follow John Brian Shannon on Twitter at: @EVcentral