Vertical Farming with Recycled Shipping Containers

by John Brian Shannon
Originally published at JohnBrianShannon.com

There are hundreds of thousands of used, high-quality metal shipping containers taking up acres of storage land in port cities all over the world.

Platoon, Kunsthalle - Berlin, Germany - 40 Shipping Container Cargotecture Building
Home in a Box constructed an indoor playground and rentable meeting space in Berlin from used shipping containers.

Some enterprising companies have taken to creating domestic living spaces, commercial buildings or storage lots out of the huge surplus of the used containers which tend to accumulate in the developed world as it is too expensive to ship them back to China, empty. (We buy their stuff, they don’t buy ours)

Anyway, there are hundreds of thousands of them scattered around the world and can be had for as little as $1500-$3600. apiece (in ‘as is’ condition)

Shipping containers are the perfect containment architecture for vertical gardens

Shipping containers are engineered to be very strong and can be stacked up to 9-high without any additional supports. Windows can even be cut into the metal panels without weakening the structural integrity (most of the strength is in the corners where they lock together) so that daylight may enter the structure.

“Reusable shipping containers provide a cost effective and sustainable approach to building design.” — Public Sector and Local Government Magazine

OBS Tower project. Container City
The (temporary) OBS Tower was an impressive addition to the Stratford Olympic Park.
Located on a tree lined public plaza within the park, the OBS Tower has created space for ground floor food outlets with their own kitchen, technical rooms and 10 broadcasting studios over two further floors — each one offering the visiting media studios with unobstructed views over the main stadium through the large glass frontage.

Might as well get the roof working for you

Dramatically lower cost solar panels are available on the market today. A couple of decades ago it cost over $100 per watt (installed price) to get your power from solar panels during the daytime and without battery backup. As of 2014, it costs less than $4.00 per watt (installed price in the U.S.A.) and if you live in Europe it costs about $2.00 per watt (installed price in Europe)

If you’re wondering about the difference in price between the U.S.A. and Europe, it’s only the profit margin that makes the difference. All the solar panels are comparably priced, as are the inverter units, wiring, etc. and often come from the same manufacturer in China.

So far, we have super cheap and stackable containment for vertical gardens and we have low-cost daytime electricity

Now what about night-time electricity? We have some choices. We can tap the grid and pay the regular commercial electricity rate to run the grow lights and the heat, we can purchase building scale battery systems from a company like SolarCity or you can run a diesel powered generator (a gen-set) for electrical power.

The good news is that commercial battery systems to complement solar panel installations have fallen in price and are approaching price parity with other grid-alternative power sources

Also, diesel fuel prices have risen dramatically since the invention of the gen-set, but these units (although they do emit copious amounts of pollution and you can’t run them indoors) are very reliable and it is almost impossible that a crop failure could result from a gen-set failure as another unit could quickly be transported to the location and hooked up before much crop damage could occur.

Grid power is fine, but to prevent crop failure in the case of winter-time power outages, a gen-set or battery backup is a necessity.

keetwonen
Shipping container college dorms being assembled in Amsterdam.
shipping-container-student-apartments-keetwonen-1
The massive Keetwonen complex houses 1,000 students.
College dorms in the Netherlands.
College dorms in Amsterdam, the Netherlands. Demand for these units is high, as they are soundproof and secure.
College dorms in the Netherlands.
College dorms in the Netherlands house many thousands of students and not just at this location in Amsterdam.

So, it appears that college dorms and BBC broadcasting facilities (for two good examples) can be easily assembled using these massive Lego-like building blocks.

What would we need in order to build vertical gardens?

  1. Land area equal to one city block
  2. A number of stackable, used shipping containers
  3. Solar panel array installed on top of the shipping containers, equal in size to one city block
  4. Backup power via battery or gen-set
  5. Grid connection
  6. Located near any major city
  7. A number of grow lights per unit
  8. Hydroponic or low-soil agriculture
  9. Compost container
  10. A number of staff to perform seeding, care and harvesting of plants
  11. One maintenance person per location
Crou shipping container housing from France.
Cité a Docks is a four-story building assembled out of 100 shipping containers to make student apartments. Cattani Architects equipped each 258 square-foot room with bathrooms, kitchens, free Wi-Fi, and heat and sound insulation.

The great thing about these super-strong building blocks, is that they can be arranged in any number of ways to suit individual site requirements. Standard container lengths start at 10 feet, 20, 40, 48 and 53 feet — but individual units can be welded or bolted together to arrive at any number of lengths.

HIVE-INN CITY FARM NYC
HIVE-INN CITY FARM New York City (proposed)

Interior-wise, any number of efficient-space designs are possible. Growing indoors where there are no drought, flooding, pests, human theft, or other concerns can be hundreds of times more efficient than conventional farming — and growing indoors means year-round crops. Thanks to solar-powered grow lights.

Hive-Inn City Farm design concept
The Hive-Inn City Farm design is only a concept at this point (see the OVA Facebook page)

None of it is rocket science, it’s ‘just’ an opportunity begging for a chance!

Related Articles

 

Vertical Farming gets ready to Grow

by John Brian Shannon.

Brooklyn Grange, a one acre urban farm on top of industrial 6 story industrial building in the Long Island City neighbourhood of Queens.
Brooklyn Grange is a 1-acre farm on top of an industrial 6-story building in New York City. Plans are on to lease some of the top floors which will turn Brooklyn Grange into a true Vertical Farm – as opposed to an outdoor rooftop farm. brooklyngrangefarm.com

Vertical Farming to increase local food production in cities

As the global population tracks toward 10 billion by 2060 and evermore potential farmland is scooped up by developers for residences, commercial buildings and industrial use, vertical farming looks to be a viable way to grow fruits and vegetables within cities — as opposed to hundreds or thousands of miles away.

According to the UN, the combined land area under agricultural land management on the planet is equal in size to the entire South American continent. Before 2060, an additional land area the size of Brazil will be required to grow crops for human consumption and to grow feed for livestock if we continue to employ present agriculture policies. Only the best land can be used for agriculture or the crops simply fail, while livestock underperform in sub-optimal conditions.

Finding more locations with acceptable levels of rainfall and sunshine, nutrient-rich well-drained soil, and the proper topographical profile will become even more of a challenge in the coming years. Of prime importance for food producers is the location of farming and ranching operations as spoilage/shipping costs often soar with increased distance-to-market.

Potential to Save billions of gallons of water

The huge water capacity required for conventional agriculture and ranching is a major issue. Extremely high levels of water usage result in high costs for farmers which are then passed on to consumers. Soil erosion, water shortages, and massive contamination of waterways are also significant and growing problems. Unimaginable quantities of water are required for crops to flourish, while astonishing water loss rates due to evaporation and fertilizer/pesticide runoff polluting our rivers and coastal areas now rank among our most serious marine pollution problems.

In Arizona, it takes an average of 25 gallons of water to grow one head of Romaine lettuce. In California, growing a head of Romaine lettuce requires 20 gallons of water. In the vertical farming scenario, growing one head of Romaine lettuce uses only .33 of a gallon, and with zero pesticide use involved and no losses to wildlife/drought/flooding. 

You might not think it, but agriculture is one of the most studied sectors on the planet. Even NASA is involved. Data is downloaded from high-tech NASA satellites and is made available to farmers and ranchers on a daily basis. Radar, thermal imaging and weather satellites all contribute their datasets to help the people who grow our food, to produce even more. And it works. Almost every year, the U.S., Canada and Europe show a larger ‘bumper crop’ than the year before.

All of these factors however, conspire to add to the final price that consumers pay. This means that we have a system that works, as it produces plenty of food and crop yields seem to increase every year. But it is extraordinarily expensive. Let’s review (conventional production method) costs that affect the final price at the market.

  • Entire satellite systems and government departments devoted to enhancing crop yields.
  • Massive transportation systems to move and warehouse food.
  • Obscene levels of water consumption/wastage.
  • Highly contaminated water runoff into formerly pristine rivers/lakes/coastal ocean areas.
  • High rates of food spoilage during transportation/storage (up to 30% in some countries).
  • Land contamination and degradation, including soil erosion.
  • Loss of natural habitat for wildlife.
  • Loss of land for human uses, such as homes, or sport & recreation.
  • Gigatonnes of fertilizers and pesticides which are derived from highly-refined petroleum.
  • Price spikes due to extreme weather events such as drought, hurricane/typhoon, flooding.
  • Expensive GMO technology to combat natural pests and weather challenges.
  • Huge research budgets (government, industry and academia) to solve crop failure/livestock disease problems.
  • Chemical sprays or radiation treatment (irradiation) to control bacteria prior to transport or storage.

Vertical Farming to lower food costs for consumers

Vertical farming adroitly bypasses all of the above problems and more by producing food (and small livestock) very close to, or within population centres. In the vertical farming scenario, all of the food produced is consumed locally, thereby negating the need for warehousing, trans-ocean shipping, trans-national rail, producer-to-city and city-to-city trucking.

Food spoilage/wastage is dramatically lowered due to the rapid delivery times that are possible when delivering ultra-fresh produce within one city — as compared to shipping/warehousing produce grown hundreds or thousands of miles away.

No multi-billion dollar NASA satellite systems required! No loss of animal or human habitat, no polluted waterways, no GMO’s, no price spikes. Perhaps most profoundly of all, millions of gallons of water per hectare/per season are no longer required, thereby freeing up that water for human consumption, for use by fish and wildlife, and for hydro-electric power production. Some rivers in the United States have stopped flowing their historic route to the sea, as ALL of the water in the watershed gets diverted for farming and ranching use long before it reaches the ocean. Bad for the fish that once lived in those river systems too.

Can you think of a better use for vacant office towers than hydroponic food growing operations?

Lower pollution levels due to dramatically lower transportation mileage (per megatonne of produce) is just one reason why governments may want to assist with startup funding for such operations. Want another reason? Many more local jobs will be produced — permanent jobs that can never be outsourced to another state or country.

Yet another benefit concerns grocery store operators; Fresh, undamaged produce that is only one-day away from their store shelves. “The Bridge is Out” or “Snow Closes Highway” or “Train Derailment Blocks Access to Town” — all of these types of news headlines are non-problems for Vertical Farming operations, grocery stores, and the customers who rely on the stores.

Vertical Farming Quiz: Did you know?

  • In the United States most food travels an average of 1500 miles from producer to consumer
  • Indoor hydroponic farming uses 80% less water than conventional farming techniques
  • Vertical farming operations filter massive amounts of pollutants out of city air
  • Vertical farming continuously recycles the water it requires

Some foresighted organizations have already embarked on such projects. In Milan Italy, they are building purpose-built concrete highrise residential buildings with a forest as part of the architecture. Milan’s attempt to clean that city’s incredibly polluted air now include an outdoor vertical forest — equal to a natural forest 1-hectare in size — that will purge tonnes of pollutants and particulates from city air. Bosco Verticale (see below) is Milan’s first such project.

Bosco Verticale. Milan, Italy.
Bosco Verticale. Milan, Italy. (This two-building complex will be ready for Expo 2015 in Milan, Italy)

 

Vertical farming, offices and residences combined. Urban cactus Rotterdam, Netherlands
Vertical farming, offices and residences combined. Urban Cactus, Rotterdam, Netherlands. (This combined luxury office tower and residential suites complex is already complete and occupied)

Vertical farming image for illustrative purposes only. Vertical farming by Chris Jacobs
Artistic rendering of a Vertical Farming purpose-built building. ‘Vertical farming’ by Chris Jacobs. (Cylindrical building shape allows more natural light to fall on the plants)

Additional Vertical Farming information:

Working Vertical Farming operations:

Vertical forest/office tower/residences/air pollution mitigation system, under construction:

Future Urban Farming Event:

  • International Conference on Vertical Farming and Urban Agriculture 2014 (click here to visit website). September 9-10, 2014 at the University Of Nottingham, UK

Follow John Brian Shannon on Twitter at: @EVcentral