Did Globalization cause Brexit?

Reposted from JohnBrianShannon.com

“The measure of a society is found in how they treat their weakest and most helpless citizens.” — former President of the United States, Jimmy Carter

And in the UK, the vote on that was June 23rd. The result is there for all the world to see.

Had a mentally disturbed man not gunned down MP Jo Cox, the Brexit win might’ve been 70 percent.

Regardless, 52 percent of Britons said EU membership isn’t working for them, in one way or another.

And this is the whole point; If you’re a 1-percenter or an elite, the EU is a truly wonderful place to live. I’d have to call it an ‘unparalleled’ existence, living in historic Europe, beautiful Europe, a continent full of amazing cultures and such technological prowess and so much more(!) that it would take a year-long video presentation just to cover the basics.

But if you’re a ‘working stiff’ it’s not so good.

Did Globalization cause Brexit?
Did Globalization cause Brexit? Vote Leave supporters hold Union flags in Westminster after Britain voted to leave on the European Union in London, Britain, June 24, 2016. REUTERS/Toby Melville

OF COURSE the economic problems in the EU and other Western nations are globalization-induced. It’s so apparent it’s beyond all argument.

Fully half of the Brexiters angst could be traced or blamed on the follow-on effects of globalization.

That doesn’t give the EU governance architecture a ‘free pass’ however — on the contrary — the EU is one of the main ‘pushers’ of the globalization drug, and with that (good) drug come the (negative) side-effects;

Which are; the offshoring of jobs, higher unemployment, more competition for jobs, massive immigration / ghettoization, higher crime rates, higher societal costs (including, but not limited to; policing, court, incarceration, property damage, and intangibles like ‘how safe’ citizens feel in their own city) also higher traffic flows in airports / shipping ports / highways / and in cities — all of which suddenly require massive upgrades to handle the increased traffic. And so much more than that short list.

I’m the first to agree that the thing we call globalization is a truly wonderful and great thing! But the job is only half-done.

Globalization has created a permanent poor class (whose jobs were shipped to Asia, and many remaining jobs were taken by economic immigrants) a situation which has yet to be properly addressed in the EU.

When a society isn’t working for 2/5ths of the citizens, it isn’t working. Period. Full stop. Until the day it’s rectified.

And that’s what I’m hoping for. I’m waiting for the mandarins in Brussels (who can’t be fired by ‘The People’ because they’re unelected) to begin to address the shortcomings of their governance architecture — of which globalization is a major platform.

They should’ve been proactive all along, instead of spending hundreds of thousands of person-hours on what ingredients bread may, or may not have. (How ‘Soviet’ of them)

It’s difficult to believe that some people can’t understand Britons voting for Brexit.

  • Either the EU must begin holding elections for their highest officials (to allow ‘The People’ a chance to ‘vent’ when things aren’t going well) instead of choosing to exit the EU,
  • OR
  • the unelected mandarins must begin to address the negative aspects of globalization for the bottom two economic quintiles (2/5ths) of the EU’s citizenry.

Otherwise, the whole thing will eventually fail — with nations continuing to join the EU, but more leaving than joining.

Were a similar referendum to the UK referendum held in every EU nation next week, I’d expect that 52 percent (or more) of EU citizens would vote to exit the European Union.

And that would be a crying shame. But it wouldn’t stop it from occurring.

There are few who support the European project as sincerely as I, but there comes a time when we must be candid about successes (many) and failures (only two; But causing two other failures, for a grand total of four failures) and with more failures likely.

The failure to address the;
(1) negative aspects of globalization, is caused by;
(2) a democratic deficit in Brussels, which caused;
(3) Swiss citizens to reject EU membership in 2014, and;
(4) British citizens to vote Brexit in 2016.

Stay tuned for more such failures — and all of it will be on account of the democratic deficit of the eurocrats and their failure to address the negative aspects of globalization.

It’s not the EU’s fault, but it is the EU’s problem. And it needs solving, ASAP.

by John Brian Shannon 

Renewable Energy Policy can Save the EU

Originally published at JohnBrianShannon.com by John Brian Shannon

An accelerated switch to renewable energy is the path to EU jobs and prosperity

Europe is on shaky ground. There is even talk in some quarters that the euro, and consequently the EU, may not last a year.

Critics of the European Union are predicting that continued austerity measures, the elections in Greece, petroleum price instability, and Russian moves in Ukraine will conspire to topple the European Union.

Of course, this is a subject of ongoing debate. EU backers say that the present economic morass will end and that the UK and other European nations will join as full European Union members in the coming months, resulting in a unified and complementary union ready to take on the challenges and opportunities of the 21st century.

Success Stories Throughout History

Throughout history, various leaders have ‘risen to the occasion’ to provide visionary leadership — seemingly ‘rising out of nowhere’ to inspire great love among the public for a cause, and on account of their great vision and leadership impossible feats occurred on their watch due to the combined willpower of millions of thereby-inspired people.

People are individuals, and no matter how many individuals there are in a country or in a larger economic union like the EU, at the end of the day every one of them are individuals living inside a larger society. Therefore, leaders must appeal to those things important to their citizens.

In Life; All a person really needs, is a person (or something) to love. If you can’t give them that, give them hope. If you can’t give them that, at least give them something to do.

Leaders who can inspire love for the country through their vision and charisma, have the effect of giving each individual in the country something to love. Or at the very least, give them hope.

Where would the United States have been without FDR?

The New Deal was a series of domestic programs enacted in the United States mainly between 1933 and 1938. They included laws passed by Congress as well as presidential executive orders during the first term (1933–37) of President Franklin D. Roosevelt.

The programs were in response to the Great Depression, and focused on what historians call the “3 Rs”: Relief, Recovery, and Reform.

That is Relief for the unemployed and poor; Recovery of the economy to normal levels; and Reform of the financial system to prevent a repeat depression. — Wikipedia

The success of the New Deal is beyond dispute. Without it, the United States would not be half the country that it is today.

Where would Great Britain have been without Winston S. Churchill?

Sir Winston Leonard Spencer-Churchill was a British politician who was the Prime Minister of the United Kingdom from 1940 to 1945 and again from 1951 to 1955.

Widely regarded as one of the greatest wartime leaders of the 20th century, Churchill was also an officer in the British Army, a historian, a writer (as Winston S. Churchill), and an artist. Churchill is the only British Prime Minister to have won the Nobel Prize in Literature since its inception in 1901, and was the first person to be made an honorary citizen of the United States. — Wikipedia

In between lecturing Hitler and Mussolini via his weekly radio broadcast, Winston Churchill painted a realistic picture of Great Britain for his citizens, and painted another realistic picture for them what life would be like under occupation.

Rather than be cowed by a more powerful aggressor, Churchill inspired his people to valour and sacrifice. And they responded powerfully.

What would our 21st century world have become had Mohandas K. Gandhi not perfected the art of non-violent protest?

Mohandas Karamchand Gandhi was the preeminent leader of Indian independence movement in British-ruled India. Employing nonviolent civil disobedience, Gandhi led India to independence and inspired movements for civil rights and freedom across the world. Indians widely describe Gandhi as the father of the nation.

Gandhi famously led Indians in challenging the British-imposed salt tax with the 400 km (250 mi) Dandi Salt March in 1930, and later in calling for the British to Quit India in 1942. He was imprisoned for many years, upon many occasions, in both South Africa and India.

Gandhi attempted to practice nonviolence and truth in all situations, and advocated that others do the same. Gandhi’s vision of a free India was based on religious pluralism.

His birthday, 2 October, is commemorated as a national holiday, and world-wide as the International Day of Nonviolence. — Wikipedia

Imagine if every protest movement since 1947 hadn’t been influenced by Gandhi. Almost certainly, the anti-Viet Nam protests and the civil rights movement in 1960’s America would have led to civil war.

Due to Gandhi’s example, individuals who were part of the anti-war movement or the civil rights movement protested — peacefully for the most part — and to great effect.

John F. Kennedy’s decision to not be cowed by the USSR’s Nikita Khrushchev, led eventually, to the end of the Soviet Union

Had JFK not stood up to Soviet adventurism in Cuba and South America, the geopolitical world would have evolved very differently The USSR would have, in short order, controlled the Western democracies completely.

By utilizing the economic advantage, by ordering a Moon shot, and by not backing down against the communists in Viet Nam, JFK neatly avoided playing the Soviet gameplan — and instead played a gameplan that favoured the strengths of the democratic West.

All of these visionaries gave citizens reason to — love their country, to hope for a better future, to employ their good will and energies — towards solving the almost unsolvable problems of their time. (Love, Hope, Do)

Without that overarching vision promised by their political leaders, without that hope in their hearts, and without some means to express their goodwill and energy, citizens wouldn’t have united in large numbers to solve the near-insurmountable challenges of their time.

Now is the time for visionary EU renewable energy leadership

The case for the EU to adopt a ‘50% renewable energy by 2020’ portfolio and make it an ‘air quality and jobs mission’ for citizens and governments alike:

The vast majority of Europeans want a renewable energy future.

They know that the technological hurdles have been overcome, they know that many Pacific Ocean island nation-states and Indian Ocean islands now run on 100% renewable energy, they know that Norway is powered by 100% renewable energy and that Iceland has surpassed 76% renewable energy use.

They know that Sweden gets 51% of its energy from renewable energy, and that Latvia, Finland, Austria, and Denmark aren’t far behind. They see Estonia, Portugal, and Romania getting more than 25% of their electricity from renewable energy and they see Germany’s Energiewende setting stellar records for renewable energy output every month.

Other nations in Europe have surprisingly advanced renewable energy programs and some EU nations will surpass their renewable energy target before 2020.

Renewable Energy provides massive employment opportunities

And it is becoming apparent that when compared to the fossil fuel industry, the renewable energy industry provides thousands more jobs per million people. Always handy that, a job to go to.

Energy Price Parity and Subsidy Regimes

Not only has some renewable energy approached price parity with conventional energy, in some cases it has surpassed it. Especially when the massive global fossil fuel subsidies that topped $600 billion in 2014 ($550 billion in 2013) are factored in.

Meanwhile, global renewable energy subsidies barely hit $100 billion in 2014, the majority share of it spent in China.

Worried about fossil fuel subsidies? That’s nothing compared to fossil fuel externalities

Fossil fuel subsidies of $600 billion (globally) are one thing. But it now appears that the economic totality of fossil fuel cost to healthcare systems, to livestock health, the agriculture sector, the global climate, regional climate (local drought or flooding) and damage to outdoor concrete and metal structures may now exceed $2 trillion dollars per year.

China reports 410,000 premature deaths per year are due to air pollution. The U.S. admits to 200,000 premature deaths by air pollution and as many as 400,000 premature deaths per year occur in Europe due to our overuse of fossil fuels.

If you add the global rising fossil fuel subsidies of $600 billion to the global externality cost of fossil fuels, it equals approximately $2.6 trillion (globally).

How much renewable energy can we get for $2.6 trillion dollars, please?

It’s not that fossil fuels are intrinsically bad, or evil. It’s not that the people who run those companies are bad, or evil. It’s not the shareholder’s fault either.

It’s just that too many of us are using fossil fuel.

And nobody is forcing us to buy it. If there are reasonable alternatives to fossil fuel overuse, then citizens are making a conscious decision to pollute the air, rather than choose those alternative forms of energy.

But if no alternative exists for citizens to purchase (and yet consumer demand is there) that is primarily the fault of policymakers.

The solution to the fossil fuel subsidy and externality problem in the EU? Renewable energy

With the right vision and the right leadership, getting the EU to a 50% renewable energy minimum standard by 2020 is eminently possible.

There are no technological hurdles that haven’t been solved.

There simply exists no public outcry against renewable energy power plants.

Grid parity (with low subsidy) is now the norm — even against massively subsidized fossil fuel and nuclear power.

And several countries around the world already run on 100% renewable energy. One of them is in Europe. (Norway) So it can be done.

It’s not about; How much will switching to renewable energy cost us?

It’s now about; How much will renewable energy save us?

Each one euro spent on renewable energy installations (actual installations, not more endless research) could save two euros of fossil fuel subsidy and three euros of fossil fuel externality cost — although there is a time lag involved before healthcare systems, ranchers, farmers, and owners of infrastructure see declining costs.

Following the 1/2/3 fossil fuel subsidy and externality equation, we see that if the EU suddenly installed 10 billion euros worth of wind turbines and solar panels (displacing the equivalent amount of fossil electrical generation) the EU would save 20 billion euros of subsidy, and would over 25 years, save 30 billion euros in heathcare costs, costs to livestock health and agriculture, and outdoor concrete and metal infrastructure repair costs.

Spending 10 billion to save 50 billion — for a net save of 40 billion euros over 25 years. Not bad.

Spending 100 billion euros to save 500 billion — for a net save of 400 billion over 25 years, that works too.

So, denizens of Europe, how much fossil fuel electrical power production would you like to replace with renewable energy?

The EU should move to a 50% renewable energy portfolio by 2020 and make it a priority ‘mission’ for citizens and governments alike. An energy ‘New Deal’ for EU citizens

In order to plan for a clean EU energy future, we need to look at where the European Union is today and make a responsible plan, one that displaces fossil fuel electrical power production without placing undue economic hardship on existing electrical power producers.

A ‘can-do’ attitude that doesn’t ignore the many positives associated with an EU-wide 50% renewable energy standard will be required to meet the challenge

Present EU renewable energy targets by 2020 could easily be ramped-up across-the-board to 50%. NOTE: Sweden is already there, with Latvia, Finland and Austria not far behind.
EU 2020 renewable energy targets could easily be ramped-up across-the-board to 50% renewable energy usage. NOTE: Iceland and Sweden have surpassed the 50% renewable energy threshold, with Latvia, Finland, Austria and Denmark not far behind.

The best candidate for an EU-financed switch to renewable energy?

Malta is presently striving to meet its target of 10% of energy demand from renewable sources by 2020. However, Malta could easily convert to 100% renewable energy in as little as 24 months.

Malta is a tiny island nation and other tiny island nations have successfully transitioned to 100% renewable energy — and it took them only a few short months to accomplish that goal.

Malta’s electrical grid produces 571 MW at peak load and uses expensive imported fossil fuels.

Replacing Malta’s fossil fueled electrical grid with a combination of offshore / onshore wind turbines and solar panels is well within our present-day technical capabilities and would save the Malta government millions of dollars per year in fuel and healthcare costs.

A low-interest loan from the EU to cover the capital cost of wind and solar power plants and some basic technical support is what Malta needs. Nothing more complicated than that.

How would replacing Malta’s present electrical power generation with 100% renewable energy benefit the EU and the residents of Malta alike?

It’s a given that all of the wind turbines and solar panels / inverters, etc. would be sourced from the EU. In fact, European sourcing could be a requirement of obtaining the EU financing for the project.

All of the engineering, manufacturing and installation / grid connection would be performed by EU workers.

Malta’s residents and visitors would thereafter enjoy clean air, lower healthcare costs, better quality of life, and could say goodbye to toxic and expensive, imported oil.

From 10% to 100% renewable energy within 24 months — now that would demonstrate political and environmental leadership!

Granted, Malta has the smallest electrical grid in the EU. But it’s a place to start, a place to set a baseline for the learning curve to 100% renewable energy on a per country basis, and a place to test out the actual economic inputs vs. outputs, with minimal investment.

By starting with island nations and converting them to 100% renewable energy, solid standalone renewable energy power generation experience is gained, and once completed, can serve as models for standalone systems on the continent.

To get to 50% renewable energy in other EU states requires similar measures but on a larger scale than Malta. (Low interest loans from the EU, requirement to source all equipment, materials, and labour from EU nations, and some amount of renewable energy expertise)

Some European Union nations wouldn’t need all that much investment to make the step up from their planned 2020 targets. Some will already have attained at least 30% renewable energy, assuming they hit their planned targets. Other nations have small populations, and therefore, wouldn’t need all that much capital to hit the 100% mark, let alone a 50% renewable target by 2020.

The Next Step for the EU

During the darkest days of recession in early 1980’s America, newly-elected President Ronald Reagan didn’t appear and suddenly solve America’s economic problems.

He told Americans (very convincingly) that they had it in their power to solve their own economic problems and arranged some temporary loans to Chrysler and other companies — and cheered by his vision and leadership, they responded powerfully — ending America’s recession.

Someone in the EU needs to step up now, leading the charge to improve EU air quality, to lower the rate of illness and premature deaths due to air pollution, to lower the damage to livestock and agriculture, and to concrete and metal infrastructure — thereby creating tens of thousands of well-paying jobs — by insisting on a minimum of 50% renewable energy standard by 2020 for all EU nations.

And that great, overarching vision in itself, will be the thing that EU residents will love, hope for, and willingly agree to do, for the next five years. Neatly ending the EU’s present recession.

Let’s roll up our sleeves, people. We’ve got work to do.

Related Article:

Air Pollution Cost Approaches $1 trillion in the West

by John Brian Shannon
(Originally published at JBSnews.com)

Air pollution has a very real cost to our civilization via increased healthcare costs, premature deaths, lowered productivity, environmental degradation with resultant lowered crop yields, increased water consumption and higher taxation.

However, air pollution is only one cost associated with fossil fuel use.

There are three main costs associated with energy

  1. The retail price that you pay at the gas pump or on your utility bill for example
    (which is paid by consumers)
  2. The subsidy cost that governments pay energy producers and utility companies
    (which is ultimately paid by taxpayers)
  3. The externality cost of each type of energy
    (which is paid by taxpayers, by increased prices for consumers, and the impact on, or the ‘cost to’ the environment)

Externality cost in Europe and the U.S.A.

A recent report from the European Environment Agency (EEA) states that high air pollution levels (one type of externality) in the EU cost society €189 billion every year and it’s a number that increases every year. (That’s $235 billion when converted to U.S. dollars)

To put that number in some kind of context, the cost of the air pollution externality in the EU annually, is equal to the GDP of Finland.

Let’s state that even more clearly. The amount of taxation paid by EU taxpayers every year to pay for airborne fossil fuel damage is equal to Finland’s entire annual economic output!

It’s getting worse, not better, notwithstanding recent renewable energy programs and incentives. Even the admirable German Energiewende program is barely making an impact when we look at the overall EU air quality index.

“Of the 30 biggest facilities it identified as causing the most damage, 26 were power plants, mainly fueled by coal in Germany and eastern Europe.” — Barbara Lewis (Reuters)

That’s just Europe. It’s even worse in the U.S., according to a landmark Harvard University report which says coal-fired power generation (externality cost alone) costs the U.S. taxpayer over $500 billion/yr.

“Each stage in the life cycle of coal—extraction, transport, processing, and combustion—generates a waste stream and carries multiple hazards for health and the environment. These costs are external to the coal industry and thus are often considered as “externalities.”

We estimate that the life cycle effects of coal and the waste stream generated are costing the U.S. public a third to over one-half of a trillion dollars annually.

Many of these so-called externalities are, moreover, cumulative.

Accounting for the damages conservatively doubles to triples the price of electricity from coal per kWh generated, making wind, solar, and other forms of non fossil fuel power generation, along with investments in efficiency and electricity conservation methods, economically competitive.

We focus on Appalachia, though coal is mined in other regions of the United States and is burned throughout the world.” — Full Cost Accounting for the Life Cycle of Coal by Dr. Paul Epstein, the Director of Harvard Medical School Center for Health and the Global Environment, and eleven other co-authors

The report also notes that electricity costs would need to rise by another .09 to .27 cents per kilowatt hour in the U.S. to cover the externality cost of American coal-fired electricity production.

The externality cost for solar or wind power plants is zero, just for the record

Dr. Epstein and his team notes: “Coal burning produces one and a half times the CO2 emissions of oil combustion and twice that from burning natural gas (for an equal amount of energy produced).”

There’s the argument to switch from coal to natural gas right there

Also in the Harvard report in regards to the intrinsic inefficiency of coal: “Energy specialist Amory Lovins estimates that after mining, processing, transporting and burning coal, and transmitting the electricity, only about 3% of the energy in the coal is used in incandescent light bulbs.”

“…In the United States in 2005, coal produced 50% of the nation’s electricity but 81% of the CO2 emissions.

For 2030, coal is projected to produce 53% of U.S. power and 85% of the U.S. CO2 emissions from electricity generation.

None of these figures includes the additional life cycle greenhouse gas (GHG) emissions from coal, including methane from coal mines, emissions from coal transport, other GHG emissions (e.g., particulates or black carbon), and carbon and nitrous oxide (N2O) emissions from land transformation in the case of MTR coal mining.” — Harvard University’s Full Cost Accounting for the Life Cycle of Coal report

It’s not like this information is secret. All European, American, and Asian policymakers now know about the externality costs of coal vs. renewable energy. It’s just that until recently everyone thought that the cost of switching to renewable energy, was higher than the cost of fossil externalities.

It’s not only an economic problem, it’s also a health problem

“Air pollution impacts human health, resulting in extra healthcare costs, lost productivity, and fewer work days. Other impacts are reduced crop yields and building damage.

Particulate matter and ground-level ozone are two of the main pollutants that come from coal.

90% or more of Europeans living in cities are exposed to harmful air pollution. Bulgaria and Poland have some of the worst pollution of the European countries.

An estimated 400,000 premature deaths in European cities were linked to air pollution in 2011.” — CleanTechnica

Externality cost in China

Remember the Beijing Olympics where the city’s industry and commercial business were shut down to allow visitors and athletes to breathe clean air during their stay (and Wow!) look at their clear blue sky for the first time in decades. Great for tourists! Bad for Beijing business and industry, with the exception of the tourism industry (for one month) of course.

The Common Language Project reported in 2008 that premature deaths in China resulting from fossil fuel air pollution were surpassing 400,000 per year.

“China faces a number of serious environmental issues caused by overpopulation and rapid industrial growth. Water pollution and a resulting shortage of drinking water is one such issue, as is air pollution caused by an over-reliance on coal as fuel. It has been estimated that 410,000 Chinese die as a result of pollution each year.” clpmag.org

The die is cast since it is becoming common knowledge that renewable energy merely requires a small subsidy to assist with power plant construction and grid harmonization — while fossil fuels continue to require truly massive and ongoing subsidies to continue operations.

Subsidy cost of fossil fuels

Already there is talk of ending fossil fuel producer subsidies, which in 2014 will top $600 billion worldwide

Want to add up the total costs (direct economic subsidy and externality cost subsidy) of fossil fuels?

Add the $600 billion global fossil fuel subsidy to the to the $2 trillion dollars of global externality cost and you arrive at (approx) $2.5 trillion dollars per year. Then there is the more than 1 million premature deaths globally caused by air pollution. All of that is subsidized by the world’s taxpayers.

Compare that to the total costs of renewable energy. Well, for starters, the economic subsidy dollar amount for renewable energy is much less (about $100 billion per year globally) and there are no externality costs.

No deaths. No illness. No direct or related productivity loss due to a host of fossil fuel related issues (oil spills, coal car derailment, river contamination, explosions in pipelines or factories) for just a very few examples.

The fossil fuel industry is a very mature industry, it has found ways to do more with ever-fewer employees, and it gets more subsidy dollars than any other economic segment on the planet.

By comparison, the renewable energy industry is a new segment, one that requires many thousands of workers and it gets only relative handfuls of subsidy dollars. And, no externalities.

It becomes clearer every day that high carbon fossil electricity power production must be displaced by renewable energy

No longer is it some arcane moral argument that we should switch to renewables for the good of the Earth; Fossil fuel is proving to be a major factor in human illness/premature deaths, it sends our money abroad to purchase energy instead of keeping our money in our own countries, and the wholly-taxpayer-funded subsidy cost of fossil is out of control and getting worse with each passing year.

The time for dithering is past. It’s time to make the switch to renewable energy, and to start, we need to remove the worst polluting power plants from the grid (and at the very least, replace them with natural gas powered plants) or even better, replace them with hybrid wind and solar power plants.

To accomplish this, governments need to begin diverting some of the tens of billions of dollars annually paid to the fossil fuel industry to the renewable energy industry.

Germany’s Energiewende program was (and still is) an admirable first step. Once Germany has completed it’s energy transition away from oil, coal and nuclear — having replaced all of that generation capacity with renewable energy and natural gas, only then can it be hailed a complete success — and German leaders should go down in history as being instrumental in changing the world’s 21st century energy paradigm.

Dank an unsere deutschen Freunde! (With thanks to our German friends!)

If only every nation would sign-on to matching or exceeding the ongoing German example, we wouldn’t have 1 million premature deaths globally due to fossil fuel burning, we wouldn’t have almost 2 trillion dollars of externality cost, we wouldn’t need $600 billion dollars of direct subsidies for fossil fuel producers — and we would all live in a healthier environment, and our plant, animal, and aquatic life would return to their normally thriving state.

Taxes would reflect the global $2.5 trillion drop in combined fossil fuel subsidy and fossil fuel externality costs, employment stats would improve, productivity would increase, the tourism industry would receive a boost, and enjoyment of life for individuals would rebound.

It’s a truism in the energy industry that all energy is subsidized, of that there is no doubt. Even renewable energy receives tiny amounts of subsidy, relative to fossil.

But it is now apparent that over the past 100 years, getting ‘the best (energy) bang for the buck’ has been our nemesis. The energy world that we once knew, is about to change.

The world didn’t come to an end when air travel began to replace rail travel in the 1950’s. Now almost everyone travels by air, and only few travel by train.

And what about the railway investors didn’t they lose their money when the age of rail tapered-off? No, they simply moved their money to the new transportation mode and made as much or more money in the airline business.

Likewise, the world will not come to an end now that renewable energy is beginning to displace coal and oil. Investors will simply reallocate their money and make as much or more money in renewable energy.

European Electric Vehicle Sales up 79% from 2013

by John Brian Shannon John Brian Shannon

What a difference a year makes. Electric Vehicles, once a novelty in Europe, seem to have hit the mainstream. No doubt there is still plenty of room to grow as even with the latest sales increase, EV’s only make up only a tiny fraction of the annual 7 million car sales in the European Union.

Overall, EV sales in Europe are up 79% from the same time period last year, although within individual nations there are wide disparities in EV adoption.

NORWAY — Although Norway is not an EU-member-country, it is part of Europe. And the earliest adopter of electric vehicles in Europe is Norway, registering only 2373 EV sales in the first half of 2013.

Now compare that to the 9950 EV sales Norway logged in the first half of 2014. That’s a 302% increase H1 2013 to H1 2014. In a country of only 5 million people that’s a pretty significant sign that EV’s are gaining wider acceptance.

TESLA has just completed the installation of dozens of free-to-use SuperCharger stations in Norway and you can find them in almost every Norwegian city, town and hamlet. A big draw with the SuperCharger system is that a Tesla Model S can fully charge in about 30 minutes from dead flat. Of course, if you’re just ’topping-up’ your Tesla battery you may not have time to finish your latte before you’re on the road again.

Prior to the latest SuperCharger installations, it took some careful driving to drive the length of Norway and not run the battery down, but one can now drive across the entire country of Norway with hardly a thought about charging locations, all of which are easily located on the huge Tesla LED dashboard display.

The most popular EV’s in Norway are the Tesla Model S and the Nissan LEAF.

GERMANY – Posting respectable numbers but nowhere near the example set by Norway, EU-member-nation Germany has almost doubled their first half EV sales compared to the same time period in 2013. German’s bought 2382 EV’s in H1 of last year, ramping up to 4230 in H1 of this year.

United Kingdom — Another European country that is still not part of the EU, the UK registered 1168 EV’s in H1 of 2013, and in H1 of 2014 some 2570 EV’s were registered.

Both the German and UK drivers prefer the Tesla Model S, the BMWi3 and the Nissan LEAF, although the new Renault Zoe is gaining acceptance as a very affordable electric vehicle.

FRANCE – French citizens buy a lot of EV’s, but numbers were slightly down compared to last year. Still, Renault continues to add affordable new EV models to its lineup. In 2013, there must have been a lot of ‘pent-up’ EV demand, as France registered 7293 EV’s in H1 of 2013, but in H1 of this year France added only 6405 Electric Vehicles to the country’s roads.

The most popular EV’s in France are the Renault Twizy, the new Renault Zoe and the Nissan LEAF.

Electric Vehicle sales soar in Europe as petrol prices move past E1,84 per litre.
Electric Vehicle sales soar in Europe as petrol prices move past € 1,89 per litre in some jurisdictions. Image courtesy of CleanTechnica.

While some countries in the EU could not match (non-EU-member) Norway’s total EV sales, some statistically significant numbers are showing for some EU nations.

The Netherlands for one, zipped up from 437 EV sales in the first half of 2013, to 1149 units in the first half of this year. While Austria went from 252 to 709 H1 to H1 and Belgium went from a lowish 195 first half EV sales up to 629 in H1 of 2014.

As far as the top electric cars, they were the Nissan Leaf (7,109), Tesla Model S (5,330), and Renault Zoe (3,669). Tesla Model S sales were largely in Norway (over 3,000 there), while Renault Zoe sales were largely in France (over 1,600 there). – CleanTechnica.com

All in all, some respectable increases with only France as the spoiler in the Year-on-Year H1 comparison.

Here are the total registrations for H1 2013 and H1 2014.

  • TOTAL EV sales all EU countries (first half of 2013) — 15591
  • TOTAL EV sales all EU countries (first half of 2014) — 27946
  • TOTAL EV sales increase all EU countries year-on-year (first half comparison) — 79%

Even with all that good news, it’s important to remember that while EV sales are showing dramatic improvements in some European nations, electric vehicles have not yet reached 1% of new car sales.

The one bright spot, now that more EV’s are hitting the roads is that public charging stations are being installed at at phenomenal rate. The Netherlands public charging system is geared to a maximum travel distance of 65 kilometres between chargers. That puts electric vehicles on an even footing with petrol stations in the country.

And, unlike a petrol car, you can always charge your car at home or at the office just by plugging it in to an ordinary wall socket, although this slow-charging mode may take a few hours.

Another positive is that affordable new EV models are hitting showrooms, giving drivers more choices and a wider range of electric vehicles to choose from. With names like Tesla, BMW, Toyota, Nissan, Renault, Volvo, Ford and Porsche solidly behind electrified vehicles, reliability issues are non-existent.

Here are some fun facts for European residents to ponder when considering the switch from a petrol engine car to an electric vehicle.

Here are the petrol prices per litre for some selected European nations, as of August 11, 2014:

  1. Austria — € 1,35
  2. Belgium — € 1,61
  3. Denmark — € 1,71
  4. Finland — € 1,63
  5. Germany — € 1,62
  6. Netherlands — € 1,79
  7. Norway — € 1,89
  8. Portugal — € 1,62
  9. Sweden — € 1,55
  10. United Kingdom — € 1,61

To convert these per litre prices, valued in euros – into their U.S. equivalents, we can use the very rough calculation of 4 litres per US gallon (which is how petrol/gasoline is sold in the United States) and 1.33 USD to 1 euro (current as of August 11, 2014).

For the Norwegian example, we can see that 4 litres of petrol (to roughly equal 1 US gallon) will cost you 7.57 euros – and converting that to US dollars gives you $10.14 per US gallon. Many US citizens use 10 gallons of petrol (or more) every day…

In Austria 1 US gallon of petrol (rough calculation) will set you back $7.18 in US dollars.

For those who elect to charge their EV at home for about 1-3 euros per day, you will have no need to stop at a petrol station and pay up to € 1,89 per litre of petrol, times how many litres you burn per day. And it’s doubtful that petrol prices will be dropping any time soon.

Not only are EV’s pollution-free, reliable and extremely low maintenance – spending 1-3 euros per day to recharge your EV battery at home (or nothing if you charge it at a free-to-use public charging station) vs. 5-10 euros per day for petrol depending on the size of the petrol engine – can really add up over the course of a year.

I strongly suspect that 2015 EV sales numbers will greatly surpass these first impressive baby-steps taken by electric vehicle manufacturers and their customers. By 2020, it would be reasonable to expect a full 10% of new vehicle registrations to be of the electrified vehicle variety.

Sustainable Energy Policy to save EU €81 bn/year by 2030

by John Brian Shannon John Brian Shannon

Accenture says a sustainable pan-European energy policy could save consumers €27 to €81 billion per year by 2030 and result in a cleaner utility grid model.
Accenture says a sustainable energy policy could save European electricity consumers €27 to €81 billion per year by 2030.

A recent report authoured by Accenture for EURELECTRIC says that if European nations work together towards an integrated and pan-European energy policy it could generate savings for electricity consumers between €27 to €81 billion per year by 2030 and the result would be a cleaner utility grid model.

Accenture is calling on European governments to phase-out renewable energy targets and renewable energy programme spending — replacing both with a carbon trading scheme, one that essentially rewards low carbon energy producers and penalizes high carbon energy producers.

All of this is happening during a time of unprecedented change within the European energy industry.

In the fascinating German example, that country shut down much of its nuclear power generation rather than spend multi-billions to upgrade its aging and oft-troubled nuclear fleet. Consequently, Germany is now burning record amounts of coal and natural gas to replace that lost generation capacity — in addition to the installation of record amounts of wind, solar and biomass capacities to the German grid.

In the decades following WWII, German utility companies operated in a cozy, sheltered environment. But few knew how expensive it was to operate and maintain on account of massive government subsidies and preferential treatment of the utility industry. German consumers never had it so good and likewise for sleepy German energy giants, which have now awoken to find that the energy picture has changed dramatically in little over a decade.

Hence, even more subsidies were employed to counter for the loss of German nuclear power via Feed-in-Tariffs (FiT) for wind, solar and biomass capacity additions to the grid, partially financed by a hefty nuclear decommissioning fee added to every German electricity bill.

At least in Germany, it turns out that while nuclear has practically disappeared, and with no fuel costs to worry about, renewable energy combined to lower German electricity rates during the hours of the day that wind and solar are active, causing downward pressure on electricity rates. At the same time, German utilities burned record amounts of brown coal and expensive Russian natural gas to meet total demand which caused upward spikes in the electricity rate during the hours of the day that coal and natural gas were required to meet total demand.

In simple terms, the removal of nuclear from the German energy mix has resulted in higher electricity rates — not because some of that capacity was replaced by renewable energy — but because significant fossil fuel burning was required to meet demand, combined with nuclear decommissioning costs.

Were German politicians and their voters wrong to shut down the country’s nuclear power plants? Not a bit. Germany’s nuclear power plants were problem-plagued and the costs to bring all 19 reactors up to modern standards were prohibitive. Shutting down the German nuclear fleet was unfortunate perhaps, but necessary.

German consumers continue to yearn for clean energy and low energy costs. Unsurprisingly, the German public has reacted to energy that seems to be getting dirtier and more expensive by the day, and the massive nuclear decommissioning costs which will continue long past 2022, perhaps until 2045.

After the loss of nuclear, the German energy grid initially became cleaner with the addition of wind and solar, but then became dirtier than ever as record amounts of brown coal and natural gas were burned! Es ist zum weinen.

And that’s just the story in Germany. Every European partner country has its own story to tell in an electricity market that is undergoing unprecedented and rapid change — and each country’s electricity market is as different from each other as they are from the German example. Although each story is different, the net result is the same; The energy industry across Europe must adapt to the loss of (some) nuclear and the growing consumer disenchantment with fossil fuels, and to the huge consumer driven additions of renewable energy to the grid. And it must be done in a cost-effective way or utility companies and their respective governments will face consumer backlash.

Utility companies shocked by the unprecedented and rapid changes thrust upon them by nuclear shutdowns and the multiple demands of consumers are hoping that a harmonized set of rules across Europe will allow them to meet rising electricity demand.

If you look at what utilities really want, it is one harmonized set of rules across Europe. Europe is one market; it’s one playing field, and utilities really benefit from a harmonized set of rules.

It is like playing football; if you play football,you don’t want different rules for different parts of the field. — Sander van Ginkel, Managing Director, Accenture Utilities

“European electricity prices are rising fast. As a result, the overall increase in energy expenditure is putting mounting pressure on residential end-users and undermining the competitiveness of European industry. The implementation of the energy transition has so far lacked optimization on a pan-European scale. Without a concerted effort to more effectively manage the costs of the energy transition, expenditure on electricity and gas in 2030 could be 50 percent higher than it is today.

A step-change in the reshaping of the European energy system is needed — by reconfirming the European power sector’s support for Europe’s sustainability agenda through an optimized approach that avoids unnecessary costs. Doing so would put significant benefits within reach: our analysis shows that implementing an integrated set of levers could generate net savings of €27 to €81 billion per year by 2030. Such savings could be achieved by further integrating energy markets and the supporting regulatory framework at a European level and by leveraging flexibility throughout the electricity value chain — provided utilities, governments, regulators and consumers can forge a joint commitment to work together.” — Quoted from the Accenture/EURELECTRIC report

Accenture’s report says that Europe’s utilities must meet customer demands for more energy, but make it cheaper and cleaner and that the existing grid model will fail unless changes are made. Accenture has suggested four main ways to achieve these goals.

  1. Optimizing renewable energy systems
  2. Market integration
  3. Active system management
  4. Demand response and energy saving

“The restructuring of the European electricity system will have to be carried out cost-effectively if we are to gain the support and trust of energy consumers. This study shows that, with the right policies in place, the energy transition could cost each European citizen over € 100 less a year than if we continue with business as usual.” Hans ten BERGE Secretary General. Union of the Electricity Industry – EURELECTRIC

It seems reasonable that all of Europe’s utility companies acting together could arrive at a better solution. Complementary and overlapping energy capabilities may prove to be the model that works for Europe, as opposed to the direct competition model favoured in the U.S.

A carbon tax which reflects the true societal costs of fossil fuels could be a just solution to Europe’s present grid malaise. However, it is doubtful that a carbon tax will ever reflect the true cost to society of fossil fuels — which have been estimated to cost €30 per tonne of CO2 — but a carbon mechanism may well provide the impetus to foster a new and better European energy paradigm.

No matter the how the equation looks, it is sometimes only the answer that matters. A cleaner energy mix and reasonable electricity rates within a stable electricity grid is something that all sides can cheer for. How very European!

See the Accenture video (click here)