Renewable Energy: The Time for Greater Ambition is Now

by John Brian Shannon.

Just as some in the renewable energy world were beginning to imagine that the battle against fossil fuel was largely won and that it was only a matter of time before we achieved 100% renewable energy globally, the Intergovernmental Panel on Climate Change (IPCC) has issued a warning informing us that now more than ever, the push for renewable energy must not lose momentum.

That’s on account of our cumulative CO2 additions to the atmosphere which are in the billions of tonnes annually. It’s one thing to add gigatonnes of carbon dioxide and other gases to the atmosphere, but it’s quite another for the Earth’s natural systems to process and absorb those gases out of the atmosphere at the same rate as they are added.

The planet’s natural systems are capable of absorbing up to 40 gigatonnes of CO2 per year which is produced by decaying organic matter and such natural phenomena as forest fires and volcanoes, but it’s not capable of handling an additional 15 gigatonnes of anthropogenic (man-made) carbon dioxide annually.

As the (IPCC) AR5 report has recently said, “the time for greater ambition is now.”

The report concludes that responding to climate change involves making choices about risks in a changing world. The nature of the risks of climate change is increasingly clear, though climate change will also continue to produce surprises. The report identifies vulnerable people, industries, and ecosystems around the world. It finds that risk from a changing climate comes from vulnerability (lack of preparedness) and exposure (people or assets in harm’s way) overlapping with hazards (triggering climate events or trends). Each of these three components can be a target for smart actions to decrease risk.

“We live in an era of man-made climate change,” said Vicente Barros, Co-Chair of Working Group II. “In many cases, we are not prepared for the climate-related risks that we already face. Investments in better preparation can pay dividends both for the present and for the future.”

Why we have Global Warming

It has also been proven that as many gigatonnes of CO2 as cannot be processed annually by natural Earth systems, will linger in the atmosphere for up to 200 years. That means that the present unabsorbed accumulation is an extremely large amount of carbon dioxide which would take 40 years for the planet’s natural systems to process and absorb, if we permanently stopped every internal combustion engine and every man-made combustion source on the planet. We know that’s not going to happen.

This extra 600 gigatonnes of carbon dioxide is the ‘carbon hangover’ which began during the industrial revolution causing the atmosphere to retain more of the Sun’s heat as compared to the benchmark pre-industrial-era atmosphere. Accumulations of CO2 in the planet’s airmass have already increased the global mean temperature by nearly 2º C since the beginning of the industrial revolution in 1760.

There are other greenhouse gases more potent than CO2 which have even more Global Warming Potential (GWP). For instance, sulfur hexafluoride stays in the atmosphere for 3200 years and causes 23,900 times more global warming per tonne, as compared to carbon dioxide.

See a partial list of these gases below:

Global Warming Potentials chart
Global Warming Potentials chart shows different pollutants and their effects

If we had planted an extra 600 million trees forty years ago, we wouldn’t be facing an extra 600 gigatonnes of CO2 now, as a typical large tree can absorb 1 tonne of carbon dioxide per year converting much of it into life-giving oxygen in the process.

As per the IPCC AR5 update of March 31, while a number of things are going right in the energy sector in terms of advancing renewable energy, the lowering of pollution levels in many cities and adding green jobs to the economy, now is not the time to reduce our efforts thereby shirking our responsibilities to future generations.

What happens if we just ignore the problem?

Of course, we could just ignore the entire problem and spend more money on increasing health care costs, non-stop rebuilding of coastal shorelines, and the dual but related costs of severe weather and increasing food prices.

But here is what that looks like.

Climate Action vs. Inaction
The cost of Climate Action vs. Climate Inaction

Scientists have concluded that for each 1º C increase in the global mean temperature, the cost to the world economy is roughly $1 trillion dollars per year.

It’s already a foregone conclusion that we will see a global mean temperature increase of 2º C (minimum) 2001-2100 due to ever-increasing 21st-century accumulations of CO2. That future temperature increase will be in addition to the previous ~2º C increase which took place during the 240 years between 1760-2000.

What the discussion is all about these days, is capping the second global mean temperature increase to 2º C — instead of ‘policy drift’ allowing an even higher level of climate change to occur.

The energy status quo is no longer affordable

The energy status quo is simply no longer an option as we now discover that the cost of climate inaction is higher than the cost of climate action. Switching out of coal via renewable energy and increasing the energy efficiency of buildings and electrical grids might cost us $500 billion globally — but could cap our generation’s contribution to global warming at 2º C.

Interestingly, $500 billion is roughly equal to the annual subsidy paid to the global oil and gas industry, which totalled $550 billion last year.

The last anthropogenic ~2º C temperature increase took place over 240 years, from 1760-2000. The best-case scenario for us 2001-2100 is to hold the next anthropogenic temperature increase to no more than ~2º C (for a grand total increase of ~4º C increase over the 340 year period from 1760-2100). If all the stars were to align perfectly this goal is just barely possible.

But that shouldn’t stop us from trying. As the IPCC has said, “the time for greater ambition is now.”

Clean Energy Ministerial (CEM5) theme: Act Together, Think Creative

Next-up on the agenda for people who care about our planet, the health of our citizens, and the high costs to consumers — who are, after all, the ones footing the climate bill via higher taxes and higher food and health care costs — is the fifth Clean Energy Ministerial (CEM5) meet-up in South Korea May 12-13, 2014.

CEM5 Seoul, South Korea May 12-13, 2014

Clean Energy Ministerial (CEM5) group government ministers and representatives will meet May 12-13, 2014 in Seoul, South Korea, under the theme of “Act Together, Think Creative” which suggests increased collaboration and innovation by the 23 participating governments as the preferred way to achieve real climate action, culminating in a new international climate agreement in 2015.

From the CEM5 website:

With four years of work behind the CEM, this year’s gathering presents an opportunity to evaluate how the CEM has performed to date and plan for how this global forum can be more effective and ambitious going forward. As in years past, CEM5 will provide ministers with an opportunity to be briefed on the latest Tracking Clean Energy Progress report from the International Energy Agency, hear the status of global clean energy investment from Bloomberg New Energy Finance, participate in public-private roundtables on key crosscutting clean energy topics, and assess progress made through the 13 CEM initiatives. 

Most importantly, CEM5 will offer ministers an opportunity to discuss ways to increase collaboration and action for greater impact—to generate more rapid progress toward CEM’s overall goal of accelerating the transition to a global clean energy economy. The discussions will focus on identifying smart policies, programs, and innovative strategies to increase energy efficiency, enhance clean energy supply, and expand energy access.

CEM5 will feature six public-private roundtables on the following crosscutting clean energy topics:

Follow John Brian Shannon on Twitter at: @EVcentral

Smart Microgrids – ‘Plug & Play’ power for communities

by John Brian Shannon

Smart microgrids represent the best opportunity for developing nations to bring reliable electricity to rural areas

Significant cost saving opportunities also arise by employing smart microgrid systems in developed countries and reliability of electricity is enhanced, as the vast majority of blackouts, brownouts, or other electricity interruptions arise from grid problems and not from the power plants which are often located hundreds of miles away from customers.

Microgrid graphic courtesy of GE.
Smart microgrid graphic for illustrative purposes only. Image courtesy of GE.

The Galvin Electricity Initiative defines smart microgrids as, “…modern, small-scale versions of the centralized electricity system. They achieve specific local goals, such as reliability, carbon emission reduction, diversification of energy sources, and cost reduction, established by the community being served. Like the bulk power grid, smart microgrids generate, distribute, and regulate the flow of electricity to consumers, but do so locally. Smart microgrids are an ideal way to integrate renewable resources at the community level and allow for customer participation in the electricity enterprise. They form the building blocks of the Perfect Power System.” — The Galvin Electricity Initiative

Not much of a factor a decade ago, microgrids are expected to explode into a $40 billion-a-year global business by 2020, according to Navigant Research, a clean-technology data and consulting company. In the U.S., about 6 gigawatts of electricity — enough to power as many as 4.8 million homes — will flow through microgrids by 2020. Reporting by Bloomberg

The microgrid market is heating up quickly, with deployments occurring around the world in a variety of application segments. Navigant Research forecasts that global annual microgrid capacity will increase from 685 Megawatts in 2013 to more than 4 Gigawatts by 2020 under a base scenario. Reporting by Navigant Research

Paul Orzeske, president of the Honeywell International Inc. says “We are seeing requests for proposals going up significantly, 30 to 40 percent higher than last year.” Honeywell built a $71 million microgrid for an FDA research center in Maryland and the agency is in the midst of a $213 million addition that will be online early next year. Reporting by Bloomberg

The industry is moving into the next phase of project development, focusing on how to develop projects on fully commercial terms. As the microgrid market is evolving, innovative solutions are coming to the fore. For example, two new subsegments – grid-tied utility distribution microgrids (UDMs) and direct current (DC) microgrids – are attracting increased market attention. Reporting by Navigant Research

The Navigant Research report is available for purchase by clicking Microgrid

Smart Microgrids Save Money and Lower Carbon Footprint

It must be said that one of the many benefits of a smart microgrid installation is the saving of hundreds of thousands, or even millions of dollars per month, in electricity costs. One example is the University of California at San Diego (UCSD) smart microgrid system which saves that institution about $850,000. each month in electricity costs.

UCSD can also sell any excess power their smart microgrid produces at various times of the day or night to the main California grid through a net-metering connection.

U of C San Diego’s mixed conventional and renewable energy smart microgrid generates 92% of its electricity demand with 42 MegaWatts (MW) of peak power.  Not only does it save UCSD $10.2 million dollars per year, it adds valuable stability to the campus electricity service.

“Our campus does $1 billion a year in research,” said Byron Washom, the university’s director of strategic energy initiatives. “We have an electron microscope that every time we have a supply disruption, it takes six weeks to recalibrate. We can’t let that happen.”

These savings aren’t an anomaly. The FDA estimates it’s already cutting about $11 million a year off its electric bill through both self-generation and the ability to sell power back to the grid — savings that will rise to $25 million a year when an addition is completed in 2014. — Reporting by Bloomberg

We all know that saving $25 million dollars per year (at just one FDA office complex!) is a big deal. That’s a savings of over $2 million dollars, each and every month.

Incidentally, during Hurricane Sandy, as millions of people were forced to survive without electricity, the smart microgrid at the FDA research centre and at Co-Op City, a 45,000-resident housing cooperative in the Bronx, New York, kept the power flowing by automatically disconnecting from the obliterated grid and running in what’s called “island mode.” Reporting by Bloomberg

In the U.S.A. alone, electricity service interruptions cost the business community some $200 billion dollars per year. Lawrence Berkeley National Laboratory has said that lost ‘business continuity’ (resulting from outages and electrical power quality issues) add another $80 billion to $150 billion to that figure.

Historic Utility Business Model Under Threat

Utility companies are feeling the pressure from numerous sources these days as renewable energy threatens their longstanding business model generally, and specifically, their Merit Order ranking, along with stricter environmental standards for energy producers. Now along comes smart microgrids to completely ruin their day.

However, some foresighted utilities see smart microgrids as an adjunct to their existing operations and as a way to add power generation capacity nearer to electricity demand centres, saving millions of dollars in the combined costs of land acquisition for new transmission line corridors, the initial ‘pylons and power line’ construction and annual maintenance.

Not to mention capturing some much needed green energy points with increasingly environmentally responsible consumers.

Some utilities are hedging their bets. With the help of $10 million in U.S. Energy Department and state grants, SDG&E has set up a microgrid in the remote desert town of Borrego Springs, about 90 miles northeast of San Diego. When a severe rainstorm knocked out utility power to the town last month, the microgrid’s collection of rooftop solar panels, micro-turbines and batteries was able to keep electricity flowing to nearly half the town’s customers, including buildings sheltering the elderly and ill from the desert heat. — Reporting by Bloomberg

Ultimately, whether smart microgrids are owned by foresighted utility companies seeking to protect market share and lower electrical transmission costs, or are owned by investor groups, cooperatives, individual investors, local governments, or any combination of those — multi-billions of dollars worth of microgrids are going to be installed by 2020.

Smart Microgrids are Powering Up

And even that $40 billion dollar business might just be the tiniest of microgrid beginnings if the stars align between local rooftop solar power producers, local wind farms, and local biomass power plants.

If utility companies fail to adapt to 21st century thinking by creating smart microgrids that serve the needs of their customers — people living in rural communities and small cities may no longer need standalone utility companies, and decide to set up their own electrical generation facilities.

Smart Microgrid in Sendai, Japan - Natural Gas plus Solar Power. Image courtesy of U.S. Department of Energy Berkeley Lab
Smart Microgrid in Sendai, Japan – Natural Gas plus Solar Power. “Perhaps the most well-known microgrid demonstration on this planet, The Sendai Microgrid Project was one of the four major New Energy and Industrial Technology Development Organization (NEDO) ones carried out in Japan between 2005 and 2008.” Image courtesy of U.S. Department of Energy Berkeley Lab

See also:

Nation’s Largest Microgrid Online

See the excellent UCSD microgrid video

Island of Opportunity: Microgrid Technology Comes to the Bay Area

Microgrids and “Micro-municipalization” Do they threaten the traditional utility business model?

Microgrids on the March: Utilities Are Building Out New Business Models to Make Islanding Work — GreenTech Media

Reinvent Fire: Change Energy Use Forever video  Quote from this video about the U.S. switch to renewable energy; “By investing $4.5 trillion we can save $9.5 trillion and make our energy problems history.”

Renewables and the Future of Oil Companies

by John Brian Shannon.

It may surprise you to know that the world’s oil companies see renewables as an unstoppable force. Some oil companies have issued landmark reports informing us that by 2100 at the latest the world will be getting 90% of its energy from renewable energy, indicating this could happen as early as 2060 under certain geopolitical conditions.

Although oil companies were initially hesitant to embrace renewable energy, in recent years their position has changed somewhat, as the many positive attributes of renewables began to convince senior oil executives that changes were on the horizon and their choice was to either embrace that change or accept an ever-declining energy market share. By their own admission only 10% of late-century energy will be met by petroleum.

In the final analysis, energy is energy after all, and it is the energy business that the oil companies are in.

So, rather than cede energy market share to up-and-coming renewable energy companies, big oil decided to become involved in renewables, first with biofuel, then solar, and later, wind. Some oil companies even purchased solar companies with their already installed and operating solar farms to gain experience in the new frontier.

The Oil Industry: Early Oil

In the early 20th century it was all about the oil, but in the later 20th century it was all about refining it into diverse products and the oil industry then morphed into a much larger entity named the petrochemical industry which created billions of tons of plastics, fertilizers, liquids, products and even medicines every year. The petrochemical sector includes the natural gas segment and thousands of miles of pipelines exist on every continent except Antarctica to move methane from gas wells to processing facilities and then forward it as usable natural gas to the end users.

A much larger industry had sprung up out of the original oil industry, one that was far larger than the one that had merely pulled oil out of the ground and refined it for transportation use.

The High Cost of Oil

Almost all countries heavily subsidize their oil and natural gas industries, and the United States is a great example. Oil companies there get over $4 billion dollars per year (yes, every year) to ensure stable petroleum supplies, compliance with regulations even in difficult drilling locations, and to help levelize gasoline prices across the country.

It is commonly reported that the petroleum industry (worldwide) receives over $500 billion dollars worth of subsidies and tax breaks every year. The worldwide oil and gas subsidy reported by the EIA for 2012 was $550 billion dollars and 2013 will have a similar subsidy figure attached to it.

Besides the massive taxpayer funded subsidy scheme for oil and gas are the externalities associated with the burning of all those long dead and liquefied dinosaurs. For each ton of gasoline burned, 4.5 tons of CO2 are created. If you add up all the billions of tons of gasoline that have been burned since the first Model T Ford rolled off the assembly line on August 12, 1908, it totals an incredible amount of CO2. Not to mention the billions of tons of non-CO2 airborne emissions created by our petroleum burning transportation sector since that date.

All this burning has a significant healthcare cost for nations (look at China, for example) and pollution-related damages will continue to affect the agriculture sector and cause damage (spalling) to concrete structures like buildings, bridges and some roads.

Although an excellent source of energy for motive power with high output per unit, the necessary high subsidies and unfortunate climate-changing externalities have conspired to considerably shorten the age of oil.

Natural Gas, the ‘Bridge Fuel’ to a Renewables Future

The oil companies are ahead of regulators on this one. Knowing that emission regulations were getting stricter every decade, petroleum companies knew that they had to pull a rabbit out of a hat, as gasoline and diesel can burn only so cleanly without prohibitively expensive technology. This is why we hear every day about ‘Natural Gas the Bridge Fuel to the Future’ and how natural gas will revolutionize our power generation segment and transportation sector.

Convincing regulators, utility companies, and automakers to switch to natural gas became the new mantra of oil company executives in order to meet increasingly stringent emission targets in developed and emerging nations.

The ‘Bridge Fuel’ will peak between 2040 and 2045 in most published oil company scenarios and somewhere between 2060 and 2100 natural gas itself will be almost completely replaced by renewables.

Although natural gas is hundreds of times cleaner burning than other fuels, it still emits plenty of CO2, but emits only minute quantities of toxic gases — and, importantly, no airborne soot or particulates.

By mid-century or 2100 at the latest, cleaner burning natural gas will be replaced in order to meet emission targets, and natural gas would lose out to renewable energy anyway — even without emission regulations — for the simple reason that solar and wind have zero fuel cost associated with their operation, while natural gas will always have a fuel cost and a separate delivery cost per gigajoule.

Imagine all of the costs involved in prospecting for and siting natural gas fields, purchasing the land, drilling, installing pipelines, processing methane into natural gas and adding even more pipelines to deliver natural gas to the end user. It all adds up, and even the most efficient gas producers/processors/pipeliners must cover their overhead.

There are no comparable ongoing fuel or distribution overheads with renewable energy.

What will we miss in the Clean Energy Future?

Once a solar or wind power plant hits completion all it needs is for the Sun to rise or the wind to blow. No drilling, no processing, no pipelines, no supertanker spills or pollution, and no CO2 sequestration required. Just plenty of clean renewable energy.

For all the right reasons, renewables are making progress. Economics, human health and our environment are the factors driving this energy change-up.

Let’s hope in our energy future that oil companies and gas companies, simply yet profoundly, morph themselves into energy companies and upon actualizing it, become renewable energy companies in the process.

For further renewable energy reading:

World Cumulative Solar Photovoltaics Installations,  2000-2012
The world installed 31,100 megawatts of solar photovoltaics (PV) in 2012—an all-time annual high that pushed global PV capacity above 100,000 megawatts. There is now enough PV operating to meet the household electricity needs of nearly 70 million people at the European level of consumption. Image courtesy of the Earth Policy Institute
World Cumulative Installed Wind Power Capacity 1980-2012
Even amid policy uncertainty in major wind power markets, wind developers still managed to set a new record for installations in 2012–with 44,000 megawatts of new wind capacity worldwide. With total capacity exceeding 280,000 megawatts, wind farms generate carbon-free electricity in more than 80 countries, 24 of which have at least 1,000 megawatts. At the European level of consumption, the world’s operating wind turbines could satisfy the residential electricity needs of 450 million people. Image courtesy of the Earth Policy Institute.

Distributed Energy – The Next Logical Step

by John Brian Shannon

Distributed Energy adds capacity to the electrical grid during the hours that electrical demand is highest, adding to grid stability and lowering costs for consumers

Over the centuries, different kinds of energy and energy delivery systems have been employed by human beings. In the Neolithic Period some 10,000 years ago, our ancestors sat around campfires for the light, warmth and security that a fire can provide. Neolithic people mostly ate their food raw, but are known to have cooked meat and occasionally grains over a fire.

For many centuries that general energy usage pattern continued and the only difference was the kind of fuel (coal later replaced wood and straw) and the size of the fire and the number of people it served.

New ways of using energy

The Industrial Revolution changed all that for people in those suddenly developing nations. New energy technology offered huge economies of scale — whereby the larger the power plant, the more efficiently it could produce affordable power for large numbers of people.

The first electrical grids were then formed to transport electricity from large-scale coal power plants or hydro-electric dams to population centres.

Since then, every decade shows larger and more efficient power plants and ever-larger populations being served by this wonderfully efficient grid system. Huge power plants and sprawling electrical grids delivered electricity to citizens over very long distances and at reasonable rates, while investors, utility companies, and power producers received reasonable rates of return on their investment.

It was (and still is) an excellent model to employ, one which brings electrical current from remote power plants to electricity users at an energy price that works for everyone. Except for the fact that some power plants produce unimaginable amounts of pollution and are necessarily and massively subsidized by taxpayers, this has been a winning energy model for a number of decades. And this very successful and reliable model will continue to provide our electricity for many years to come.

But there are serious drawbacks to grid power

Utility-scale power generation requires huge power plants, each costing tens of billions of dollars in the case of nuclear power plants, billions of dollars each in the case of hydro-electric power plants, and hundreds of millions of dollars in the case of coal power plants.

All coal and nuclear power plants were heavily subsidized by taxpayers, or they couldn’t have been built in the first place

It doesn’t end there, as coal fired power plants use hundreds or even thousands of tons of coal every day of the year at a cost of $50. to $160. per ton, not to mention the huge infrastructure costs required to build the ports and rail lines to transport the coal — paid for by taxpayers. And then add to that, the freight costs paid to the shipping companies and the railway companies to transport that coal to the power generation site. Most of the coal that Asia burns comes from North America and Australia. Even within coal rich North America, thousands of miles of railway tracks were laid down to transport North American coal to North American coal power plants.

Let’s not forget the environmental costs associated with all that toxic smoke either. China and the U.S. each produced 7.2 billion tons of coal fired CO2 in 2010 and that number is rising every year. Not to mention the many toxic oxides of nitrogen and sulfur, along with soot and airborne heavy metals that are produced wherever power plants burn coal.

Nuclear power plants likewise, use expensive to produce nuclear fuel rods or pellets and simply could not survive without massive government subsidies. Then there is the storage problem, as the so-called ‘spent fuel’ is highly radioactive and must be securely stored for up to 20,000 years in temperature-controlled conditions. Again, massive taxpayer funded infrastructure must be provided to store the world’s ever-growing pile of spent fuel.

Other than costing billions of dollars and disrupting river flows and fish habitat, hydro-electric power is a benign and good electrical generation solution. If only there were enough rivers to provide all the electricity that 7.1 billion people require! With almost every possible river already dammed on the planet, hydro-electric power plants provide only 16.2% of the world’s electricity.

An even better energy model has arrived in the form of distributed energy

Simply stated, distributed energy is created when many homes or businesses place solar panels on their rooftops or wind turbines on their properties — and then connect it to the electrical grid. Either solar panels or wind turbines can be used in the distributed energy context.

With progressive policies designed to strengthen and balance existing electricity grids, distributed energy can play a large role in ameliorating our present energy challenges.

Distributed energy is the opposite of utility-scale electrical power generation in three very important ways

  • Distributed energy emits no measurable pollution.
  • Distributed energy assists the grid operator to locate the energy source close to electrical demand centres.
  • Unimaginably large and expensive national utility grids crisscrossing the countryside are not required in the case of distributed energy.

Connecting distributed energy to the grid results in many positives for micro-energy producers, homeowners, businesses, and the grid operator. During the daytime, solar panels may produce more electricity than the homeowner or business can actually use — although during that same time of day, the utility company power plants may be straining to produce all the electricity that the grid demands during those peak hours.

Net-Metering to the Rescue!

Therefore, energy-sharing takes place via the use of a net-metering system allowing the homeowner or business owner to sell their surplus electricity to the utility company. Net-Metering allows homeowners and businesses to sell their excess electricity to the grid at a profit, while retaining all the benefits of grid connection. Installation of a net-meter at each home is the essential part of a distributed energy grid.

New financing options are becoming available to homeowners and businesses to install rooftop arrays — and even renters are able to purchase renewable energy through innovative programmes designed to boost the market share of renewables.

Some auto assembly plants in Germany and in the U.S.A. have installed wind turbines on their properties, or on nearby land purchased specifically for that purpose. Both BMW and Volkswagen are famous for building great cars, and for being distributed wind producers that have installed wind turbines near their factories, to ensure more reliable power and to avoid energy price spikes. Many ‘world citizens’ admire their environmental commitment.

IKEA, WalMart and Walgreens are famous for installing solar power plants on their store rooftops and warehouses, and WalMart, Google and Apple Computer and others, have purchased wind farms in an effort to Go Green and to alleviate the energy price spikes which are so common in the U.S. and Europe. Well done.

Distributed Energy pays off!

In California, homeowners with solar panels on their rooftops are receiving cheques for up to $2000. — or even larger amounts in the case of larger rooftop solar installations — from their utility company every January, to pay for all the surplus electricity they’ve sold to the utility company during the course of the year. California law mandates that distributed energy producers be paid up-to-date by February 1 of each year and other energy policies in the Great Bear state prove their commitment to a

In Australia, many thousands of homes with solar panels on their rooftops have dramatically added to overall grid capacity and stability by curtailing the power outages common there during peak demand hours, and some coal power plants have shut down while other coal plants are now planning for decommissioning.

Understandably so, the heavily subsidized coal and nuclear industries fear the rapidly growing distributed energy model, although coal exports to China from coal giant Australia continue at a frenetic pace.

Turn down the burners — the Sun is up!

Natural gas and hydro-electric power producers cautiously embrace distributed energy as an augmentation of their efforts to provide reliable electricity to the grid — as they can all exist as energy producers at different hours of the 24 hour day — and for very different reasons none of them are able to eclipse the others.

Distributed energy typically produces its power during peak demand hours, and is known for reducing electricity costs across-the-board due to the Merit Order effect, which is a ranking system utility companies use to decide which energy generator to employ (in real-time) throughout the day and night.

In fact, distributed energy is all about adding peak demand power to the grid — resulting in a stronger, more reliable power grid while displacing dirty energy in the process — and monetarily rewarding citizens for their surplus electricity.

Three islands powered by 100% Renewable Energy

by John Brian Shannon.

One of the best ways to measure the successful application of renewable energy are on those islands which are not connected to any other electrical grid.

Getting mainland grid power to islands can be an expensive proposition, making it impossible for many islands to receive electricity from the mainland. In the past, islands survived (or subsisted) on expensive diesel power units and obscene quantities of diesel fuel, in order to provide electricity for island residents. Rarely was any kind of renewable energy employed except for some Pacific islands that burned relatively small quantities of coconut oil or palm oil in their diesel generator.

However, islands now have the choice between clean, renewable electricity generation and diesel generator power. Solar power and wind power are the two main ways to have renewable energy on islands, but biomass and in some places, geothermal can provide residents with reliable electrical power.

Renewable Energy Powers At Least Three Populated Islands

At least three populated islands exist in the world that can legitimately be called ‘100% powered by renewable energy’ and more are soon to follow, as islands can now significantly benefit from renewable energy.

Samsø Island, Denmark. A 100% Wind Powered Island

Samsø Island, Denmark. A 100% Wind Powered Island

Samsø Island, Denmark is a 100% wind-powered island whose 4100 residents receive all of their electricity from 21 wind turbines and are able to sell their considerable surplus electricity to the rest of the country via an undersea cable system.

Note, Samsø does not import electricity from the mainland grid, rather, they export Samsø Island’s renewable energy to the mainland.

In less than ten years, Samsø went from producing 11 tonnes of carbon dioxide per person per year — one of the highest carbon emissions per capita in Europe — to just 4.4 tonnes (the U.S. is at 17.6), and has proven that running on 100 percent renewable electricity is possible.

The island now heats 60 percent of its homes with three district heating plants running on straw, and one which runs on a combination of wood chips and solar panels. People outside of the heating plants’ reach have replaced or supplemented their oil burner with solar panels, ground-source heat pumps, or wood pellet boilers.

Eleven onshore wind turbines provide 11 megawatts of power, enough to power the entire electrical load of the island (29,000 MWh per year). And 10 offshore wind turbines produce 23 megawatts, enough to compensate for the carbon dioxide emissions generated by the island’s transport sector.

This was all accomplished within eight years, two years ahead of schedule. — Rocky Mountain Institute

Tokelau, South Pacific is an island nation made up of three tiny atolls which has been powered by 100% solar power since October 2012.

Previous to that, the Pacific nation was powered by diesel generators which frequently broke down and cost $800,000 per year just for fuel. That is quite a burden for a nation whose population amounts to a grand total of 1500 citizens.

Tokelauans only had electricity 15 to 18 hours per day. They now have three solar photovoltaic systems, one on each atoll. The 4,032 solar panels (with a capacity of around one megawatt), 392 inverters, and 1,344 batteries provide 150 percent of their current electricity demand, allowing the Tokelauans to eventually expand their electricity use.

In overcast weather, the generators run on local coconut oil, providing power while recharging the battery bank. The only fossil fuels used in Tokelau now are for the island nation’s three cars.

New Zealand advanced $7 million to Tokelau to install the PV systems. But with the amount of money saved on fuel imports — the system will pay for itself in a relatively short time period (nine years with simple payback). — CleanTechnica.com

Iceland has produced 100% of its electrical power from renewables since 1980. The country’s hydroelectric dams provide 74 percent of its electricity — geothermal power produces the remaining 26 percent. Some wind turbines are now being installed to meet anticipated future electrical demand.

The aluminum industry was attracted to Iceland to take advantage of the low renewable energy electricity prices on the island nation, which provides an economic boost to Iceland generally, and employment for some Icelanders.

Despite a land area of 100,000 km², only 300,000 people inhabit the island, two-thirds of those in the capital Reykjavik. Yet, Iceland shows what can be done when a nation puts its mind to the task of eliminating fossil fuels.

Until the extensive development of the island’s hydro and geothermal resources, the country was dependent upon coal and oil for providing transportation, fueling its fishing fleet, and heating its homes.

The latter is not something to take lightly in a nation just south of the Arctic Circle. Iceland’s older residents can remember a time when coal smoke, not steam from the island’s famed [volcanic] fumaroles, shrouded the capital.

Iceland is a leader in geothermal development and exports its technical expertise worldwide. The country, along with the Philippines and El Salvador, is among countries with the highest penetration of geothermal energy in electricity generation worldwide.

On a per capita basis, Iceland is an order of magnitude ahead of any other nation in installed geothermal generating capacity. — RenewEconomy.com.au

Perhaps moreso than anywhere else, island residents can reap the benefits of renewable energy. The high cost of shipping fossil fuels to islands, not to mention the high cost of the fossil product itself, can make the transition to renewables an economic and environmental benefit for island residents.

Other 100-percent-renewable-powered islands include Floreana in the Galapagos (population: 100) and El Hierro in the Canary Islands (population: 10,000+).

Islands with 100-percent-renewable-energy goals include: Cape Verde, Tuvalu, Gotland (Sweden), Eigg Island, Scotland, and all 15 of the Cook Islands.

By switching to renewable energy, island nations reduce their reliance on imported fuels, keep money in the local economy, provide their residents with reliable power, and lower their carbon emissions. They can also serve as “test beds” for adoption of new technologies and models of what can happen on a larger scale.

And island nations are helping us learn what needs to be done. —  Laurie Guevara-Stone.