Large Scale Job Sharing Could Prevent a Host of Societal Ills

by

Truism: Whenever and wherever the unemployment rate is low anywhere in the world, drug abuse, crime, and homelessness drops.

Jobs prevent the depression that leads to drug abuse, crime, and eventually, homelessness.

Because corporations in North America prefer a high-ish unemployment rate (to guarantee they get the choicest and hungriest applicants, and to ensure a large pool of seasonal labour, and as a device that works to continuously dampen calls for a higher minimum wage) we have the follow-on problems of depression, leading to drug abuse in some cases, which eventually leads to crime and later, homelessness for many of the working poor.

Which results in higher costs to society and it’s the taxpayers who must cover those costs, one way or another

To solve this utterly predictable set of problems, all levels of government should be working with corporations to ensure that corporate needs are met — but without destroying the lives of many people who would frankly, rather be working!

When everyone matters, society works better.

Nordic countries ask; What societal problems?

Sweden has mandatory job sharing in those industries that can’t employ all of their workers. Except for retired people, students, those with chronic illness, or the very wealthy, everyone in the country works for *at least* 6 months of the year. Which neatly prevents such societal ills.

If you’ve ever visited Sweden, you’ll notice nobody lives in dumpsters there

Nordiske-flag Image courtesy of Hansjorn
Nordic flags. Image courtesy of Hansjorn. From left; Finland, Iceland, Norway, Sweden, Denmark.

Some industries in Sweden can’t use all of their available workers, so if you’re a worker in that particular industry it simply means that you’re ‘on work’ for 6 months and you’re ‘off work’ for 6 months of the year.

The ‘alternate person’ steps in and does ‘your job’ for 6 months while you’re on mandatory time off. Both people get Unemployment Insurance (UI) from Day 1 of their respective layoff dates.

It’s not like layoffs in North America. It’s more like, “Your scheduled time ‘off work’ is coming up, Anders. So, have you arranged the dates with your temporary replacement? You have? Thank you.”

In Sweden, you ‘own’ your job, you’re responsible for it, and you want to perform well for the company that has given you the responsibility for making sure that ‘your job’ is done properly

Also, even though you’re ‘off work’ for 6 months, you’re still expected to be available to fill that position whenever the alternate worker is ill, or can’t make it to work for any other reason. You like that a lot, because their UI system doesn’t penalize you for kindly making yourself available to the company AND you get to keep the wages you earned that day.

If you’re ‘on work’ for your 6 months and suddenly want a day ‘off work’ to go buy a house, propose to your partner or whatever, you just arrange it with your job sharing partner — and you’re covered. They come in and do your work for you. You inform the company merely out of courtesy that this will be happening. It’s ‘your job’ after all — not the company’s job.

So, let’s say that you’re off work for 6 months and ‘Sven’ (the person doing your job) has a skiing accident and needs 10 days off work to recover, you not only get your regular UI payment, you also get the normal wages for each day that you replaced Sven.

In this hypothetical job sharing scenario, the job of ‘Anders’ and ‘Sven’ is totally covered no matter what, 365 days of the year

Overtime wages? Unknown in Sweden. With one phone call the company simply adds another already trained worker to the project, and can keep them employed any number of days, or until project completion. Then, they send them back home until the company calls again to help with another project.

Everyone has a job, or is on UI for part of the year. Consequently, depression, drug abuse, crime, and homelessness are almost unknown in Sweden

Everyone has a job. Whether you are ‘off work’ for a time, or ‘on work’ for a time — you have a job, you have a place in society, you belong to a community. You may work 100 days per year, you may work 200 days per year, or any number of days between 100 to 365 days per year in Sweden. It depends how busy your particular industry is in that particular year.

The takeaway point is; If you live in Sweden — you’re a worker, you’re a valued person, you’re part of Sweden’s ongoing success, you belong.

When everyone matters — corporations work better, society works better, and the UN scores your country highly on the UN Happiness Index

Corporations like this employment policy, because more employees than they can afford to keep employed year ’round ‘own’ their particular position and over the course of a year, both workers communicate often, to make certain that every single working day of the year is ‘covered’ for the company.

The company doesn’t care which of the two workers are onsite on any given day, because both are eminently qualified and both feel that they ‘own the job’ and are responsible for it. Which is much better for the corporation when compared to only one person owning that job.

What happens in a Swedish company when an employee has time off due to illness, mandatory maternity leave, vacation times, or car trouble?

Nothing. The alternate worker is likely already on the premises doing the job. Utter, boring, Swedish efficiency! Also known as the Nordic Model — a fascinating mix of social and economic policies which has shown steady, predictable results, going on four decades.

The company knows that every work day of the year, each position in the company will be filled by the regular worker or the alternate worker — no matter what!

The inequality in North America is stunning. And there’s no good excuse for it. It’s merely a lack of leadership. Governments are kowtowing to uninspired, faceless, and unaccountable corporations that only care about the bottom line.

But hey, don’t blame the corporations! They’re in business to make a buck — not to solve social problems — that’s the government’s job.

But when the corporations are the ones causing the social problems via their policy of keeping workers hungry for work through a policy of high unemployment, union-busting, threats to export jobs to Asia, downsizing threats and more — that’s when we need to look at a better model.

And in the case of Sweden and the other Nordic countries, a much better model already exists — not just for society, but one that works better for corporations as well.

Natural Gas, Fuel of the Future or Methane Menace?

by John Brian Shannon
Originally published at johnbrianshannon.com

While Natural Gas has been touted as the ‘bridge fuel towards a clean energy future‘ three major drawbacks have caused concern in recent months. The first is, of course, the negatives surrounding natural gas fracking which has been well covered by the media and I’m not going to repeat all that has been said on that account.

Rather, I will concentrate of the largely unreported issues of massive methane leaks escaping natural gas well heads, called ‘fugitive emissions’ and the practice of ‘flaring’ at natural gas wells.

Over a 100-year timeframe, methane is about 35 times as potent as a climate change-driving greenhouse gas than carbon dioxide, and over 20 years, it’s 84 times more potent.

Natural gas drilling could emit up to 1,000 times the methane previously thought, possibly significantly increasing the greenhouse gas footprint of the production of natural gas, the study shows. — Climate Central

There’s no doubt that natural gas has the capacity to be a cleaner fuel than coal and the various fuels that can be obtained from crude oil such as gasoline and diesel. But it isn’t.

So, what’s the problem?

The problem is two-fold. Problem number one is methane leakage at natural gas wells, and problem number two is the ongoing practice of natural gas flaring at well heads, distribution centres and gas processing facilities.

Methane emissions from improperly sealed natural gas wellheads, combined with natural gas flaring near well heads, dramatically lowers the advantage of ‘clean’ natural gas as compared to ‘dirty’ coal and crude oil.

Natural gas as a means to produce electricity is being hailed by the Intergovernmental Panel on Climate Change as the fuel that can act as a “bridge” between carbon-heavy coal and zero-carbon renewables, helping to reduce humans’ impact on the climate. 

The idea is that burning natural gas involves fewer greenhouse gas emissions than burning coal. The IPCC in its Working Group III report says natural gas as a bridge fuel will only be effective if few gases escape into the atmosphere during natural gas production and distribution. —

Natural gas has the potential to be 1 million times cleaner than coal or crude oil based fuels if gas industry best practices are employed. But the present situation is so bad that (low carbon) natural gas airborne emissions are almost on par with (high carbon) coal and crude oil airborne emissions — once you factor everything into the equation.

A typical natural gas drilling rig. Credit: EPA

Why not properly seal the well heads?

Cost. Many gas drilling and extraction companies would like to hermetically seal their well heads to lower the death and injury rates of their workers due to raw gas exposure, to enhance overall gas recovery, decrease the waste of an incredibly useful fuel — and to lower emission levels thereby enhancing the reputation of gas as a 21st-century clean energy solution.

The reason companies won’t spend the extra ($100,000 on average) per well head (to fully encase the pipe in concrete slurry) is that shareholders don’t want lowered dividends. Nor do companies want to become less competitive as compared to the ones that don’t seal their well heads. To put this in some kind of perspective within the gas industry, some gas drilling/extraction operators have hundreds of well heads, while others only have tens of well heads.

At the end of it all, it turns out that improperly sealed natural gas wells and natural gas flaring are negating almost all of the benefits of super clean, natural gas — as compared to coal and crude oil sourced fuels.

Feel free to facepalm now.

Why not stop flaring at natural gas well heads?

Every natural gas well head must deal with pressure variables and with the normally-occurring contaminants found in natural gas. This is done onsite in a process known as flaring which is an incredibly toxic way of dealing with the problem of temporary pressure spikes and natural gas contaminants.

Flares burn off excess methane at an oil and gas field. Credit: Pacific Northwest National Laboratory

Contaminants in raw natural gas

Raw natural gas typically consists primarily of methane (CH4), the shortest and lightest hydrocarbon molecule. It also contains varying amounts of:

The raw natural gas must be purified to meet the quality standards specified by the major pipeline transmission and distribution companies. Those quality standards vary from pipeline to pipeline and are usually a function of a pipeline system’s design and the markets that it serves. In general, the standards specify that the natural gas:

  • Be within a specific range of heating value (caloric value). For example, in the United States, it should be about 1035 ± 5% BTU per cubic foot of gas at 1 atmosphere and 60°F (41 MJ ± 5% per cubic metre of gas at 1 atmosphere and 15.6°C).
  • Be delivered at or above a specified hydrocarbon dew point temperature (below which some of the hydrocarbons in the gas might condense at pipeline pressure forming liquid slugs that could damage the pipeline).
  • Dew-point adjustment serves the reduction of the concentration of water and heavy hydrocarbons in natural gas to such an extent that no condensation occurs during the ensuing transport in the pipelines
  • Be free of particulate solids and liquid water to prevent erosion, corrosion or other damage to the pipeline.
  • Be dehydrated of water vapor sufficiently to prevent the formation of methane hydrates within the gas processing plant or subsequently within the sales gas transmission pipeline. A typical water content specification in the U.S. is that gas must contain no more than seven pounds of water per million standard cubic feet (MMSCF) of gas.
  • Contain no more than trace amounts of components such as hydrogen sulfide, carbon dioxide, mercaptans, and nitrogen. The most common specification for hydrogen sulfide content is 0.25 grain H2S per 100 cubic feet of gas, or approximately 4 ppm. Specifications for CO2 typically limit the content to no more than two or three percent.Maintain mercury at less than detectable limits (approximately 0.001 ppb by volume) primarily to avoid damaging equipment in the gas processing plant or the pipeline transmission system from mercury amalgamation and embrittlement of aluminum and other metals — (from Wikipedia)

All of these contaminants are burned off during flaring. The problem is that it is a very incomplete burning cycle, one that is millions of times dirtier than the exhaust that exits your car tailpipe. Indeed historically, there have been many cases where people — or even large numbers of cattle or other livestock — living downwind of flaring stacks have died from breathing the partially burned gas.

Legislation is the obvious solution, but how?

If one state legislates against fugitive emissions from well heads and against the practice of natural gas flaring — all of the gas wells in that state will simply be capped and all gas-related economic and energy activity will cease within that state. That’s how competitive the gas industry is.

In North America for example, if the United States legislates against fugitive emissions and natural gas flaring, the flight of capital and natural gas companies to Canada would result in a huge economic boom for Canada and a dramatic loss for the United States. The reverse is also true.

The Only Solution is a Continental Solution

Therefore, there can only be one solution to the problem — and that is a continental solution to fugitive emissions and to natural gas flaring — whether this is done under the auspices of a Free Trade Agreement or as a standalone convention, it is high-time for such legislation to be passed.

It doesn’t need to be a policy masterpiece nor does it need to be technically perfect. It needs to stipulate one uniform standard that applies to all natural gas drilling/extraction/refining and transportation systems.

Above all else, it needs to be done. Now.

U.S. Production Tax Credit renewal charts Wind future

by John Brian Shannon

It boils down to this. If the U.S. Production Tax Credit (PTC) is renewed by the U.S. Congress this fall, then wind power is set to boom for the next five years.

If it isn’t renewed, we can expect a few more years like 2013 where due to the uncertainty surrounding the annual PTC expiry/renewal many projects in the U.S. were shelved, resulting in a dismal 1GW of wind installations across the U.S.A. that year.

Without the PTC renewal, 2015-2020 are likely to post similar results in the U.S. for new wind installations — at a time the rest of the world is setting yearly wind power generation and installation records.

European and Chinese wind turbine manufacturers are anticipating the decision as much of their future business could flow from the United States which has huge, untapped wind reserves, both onshore and offshore.

Fossil Fuel economic subsidies

Unlike the massive subsidies and tax breaks for the fossil fuel industries, which literally go up in smoke requiring constant subsidy dollars to continue along their present business model, wind production tax credits are not spent to lower rising fuel costs. Rather, the tax favour allows more wind turbines to be built and installed, resulting in fewer fossil fuel subsidy dollars going up in smoke.

Worldwide, the fossil fuel industry receives over $550 billion dollars of subsidy and tax breaks — and the U.S. alone gives $80 billion to their domestic oil, gas, and coal industries to lower fuel costs for consumers. That’s 1/7th of the world’s total fossil fuel subsidies, right there.

Fossil Fuel externality subsidies

That doesn’t include the implied subsidy of externalities, those costs to society from fossil fuel use that are not factored into the fuel cost and are not paid for by the oil and gas, or coal industries. Everything from the acid rain that eats concrete structures like bridges, skyscrapers, some roadways and concrete sculptures, to polluted water that must be treated before it can be used, to building filtration systems to remove airborne pollutants caused by fossil fuel burning, to medical costs borne by individuals, organizations and governments, and more. The final fossil fuel externality is, of course, the millions of premature deaths worldwide caused by the ever-increasing concentrations of fossil emissions in our atmosphere.

Fossil Fuel externality cost estimated at between $40-80 per ton of CO2

The cost of fossil fuel use is estimated to be on the order of $40-80 per ton of CO2 emitted and those costs are paid, just not at the gas pump. Governments and individuals pay that price — which varies widely depending upon where you live (city, country, downwind of coal power plants, or on the coastline with its usually fresh air).

If we included the externality cost of all fossil fuels, every type of fuel would double in cost. Our coal-fired electricity would double in cost, and removing the direct subsidies would double it again. The same would occur with gasoline and diesel for our cars.

Yes, it’s a lot of money. And one way or another, we’re paying it. Don’t deceive yourself, it is being paid, just not at the gas pump nor on your electricity bill. But we are paying those subsidies and externality costs in our taxes, and in other ways such as higher health costs and lowered life expectancy resulting from our fossil fuel addiction.

Wind PTC subsidy amounts to a paltry 2.3 cents/kWh (if renewed)

None of those externalities exist for wind power. Wind has no $40-80 per ton of CO2 externality. Wind is not asking for worldwide subsidies of $550 billion, nor is it asking for American subsidies of $80 billion dollars.

Wind power in the U.S.A. is asking for a paltry 2.3 cents/kWh over a 10 year period.

The current amount of the PTC is an inflation-adjusted 2.3 cents/kWh for ten years. For use in our levelized cost analysis, we levelized its value over twenty years, the average duration of a wind energy contract. — Visualizing the Production Tax Credit for Wind Energy, Syracuse University / University of California, Irvine / University of California, Berkeley

Here is an infographic that shows some of the ways that wind power assists the U.S. economy, which was provided to us by the American Wind Energy Association (AWEA).

AWEA_Wind_Gaphic_R5
American Wind Energy Association Graphic (R5)

Wind Power jobs

As the graphic demonstrates there are many tangible benefits of wind power in the United States, not the least of which is providing jobs for Americans, attracting billions of dollars of investment, and adding new, clean electrical generation capacity to the utility grid.

Wind turbines, an additional income source for farmers

Many farmers augment their annual income by inviting utility companies to install wind turbines on their farms. While most crops produce between $150-600 per acre of land after costs are deducted, a utility company wind turbine pad rental with 24/7 access, pays approximately $4000 per acre of land, although this varies in different parts of the country. The extreme range for wind turbine installation payments appears to be $2200-6500 per acre, depending on regional wind flows and size and height of the turbine. Unfortunately for farmers, wind turbines and their towers are quite large, limiting installations to a maximum of one turbine per every few acres, depending on the size of the unit.

Windpark-Wind-Farm
By Philip May (Own work) CC-BY-SA-3.0 via Wikimedia Commons

GE Space Frame Tower

General Electric too, is awaiting the decision and has an entirely new product line ready to deploy, both in turbines with their Brilliant wind turbine technology and their truck-transportable and easily-assembled Space Frame Towers.

GE Space Frame Tower
Introduced in 2014, GE’s five-legged Space Frame Tower is covered by a plastic fabric. Image courtesy of GE.

Be sure to check out another graphic AWEA made earlier this month highlighting some of wind’s many other benefits by clicking here: http://bit.ly/1qtwHBc.

Help us spread the good news about wind power’s good deal by sharing this graphic with friends and colleagues.

Here are a few suggested tweets: